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Abstract

We describe a novel diffusion Monte Carlo algorithm for calculating
excited stale quantum wave functions and energies which requires
lile prior knowledge of nodal surfaces. An initial, guessed, nodal
surface is refined during the simulation by balancing populations in
different nodal regions. The method requires constraints on an excited
system to ensure that it does not relax to a less energetic mode. So
long as such constraints can be found, the method will allow complex
nodal surfaces to evolve dynamically, and accuraie energies of excited
systems 10 be calculated. Results are given for a simple vibrational
system, ro-vibrational swtates of hydrogen fuoride, and excited
vibrational states of the water molecule.
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L INTRODUCTION

The purpose of this paper is to investigate the use of the Diffusion Monte Carlo (DMC)
method 10 simulate excited quantum systems. It builds upon work reviewed by Suhm and
Watts [1]: this review also provides a good general discussion of quantum Monte Carlo
method as applied o molecular vibrations Many of the underlying ideas were introduced by
Anderson |2]. and by Ceperley [3], 10 mention only a two contributors. Excited state
simulations pose several challenges to the Monte Carlo method, especially near the nodal
surface itsell. Our goal 15 to simulate solutions 10 the time independent Schrisdinger equation
without having 1o predetermine the position of nodal surfaces, and with minimal
foreknowledge of their complexity, The techniques apply especially 1o systems in which
particles move in strongly coupled analytical polentials, or polentials which are perturbed
from a simple form, thus making exact solutions difficult to calculate. In such cases, if it is
possible to make an initial guess of the wave function, the methods discussed here provide an

algorithm for relaxing the sysiem an accurate solution.

1. DIFFUSION MONTE CARLO
The fundamental equation for DMC is obtined from the time-dependeni Schridinger
equation by transforming 1o imaginary time, T = if, 10 give the diffusion equation with the

addition of a first order rate term in the form of the potential (in stomic units whereh = 1)

%F(F,rh[-%z[m_iv;]-ﬂ?‘.-]v[ﬁﬂ- ()

The diffusion coefficient, D, for particle @ is 142).
Following standard procedures, the formal solution to this equation can be wniten as an

expansion in terms of the eigenvalues, E, and eigenfunctions, @, of the Hamiltonian



157

wiF. )= Ce “o,(F). (2)

The eigenfunction components of the initial wave function either grow or decay exponentially
along the imaginary time axis, depending upon the sign of the corresponding eigenvalue.
Assuming that the initial state contains the ground state as one of its components, ¢, (7} an be
generated by propagating the system to large values of imaginary nme.

The DMC algorithm implements the propagator in its configuration space representation
using a split operstor approximation described in several papers [1-3].

e M o gt (3)

Since this form ignores the non-commuting nature of T and V, it is only valid 1o first
order in T. Propagation along the imaginary time axis proceeds iteratively by evolving the
system through small increments in time, At . The kinetic propagator is represented as random
walks in configuration space by a large number of replica systems. In the time inierval AT,
each replica is displaced by & Gaussian distributed random step with standard deviation
o= m . The potential opermtor is represented by a  multiplicative  factor

expll- VCF)AT) in the weight of each replica [1).

I MEASURING THE ENERGY OF A SYSTEM
In the standard DMC algorithm introduced by Anderson [2]. a reference cnergy s
introduced and adjusted in order 10 stabilize the population of replicas. The potential is
measured from this reference energy and at each time step the replica weights are multiplied
by expl—(V - E, JAt) instead of exp < (- VAr). The energy £, in Eq. 2 is replaced by E.-Ex.
so that if Ex = E, for some n, the corresponding eigenfunction will be stabilized, and all
higher energy components will decay exponentially in increasing t. Assuming no other

constraints are imposed on the simulation, the reference energy which stabilizes the
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population is the ground state energy. More generully, 1t is the lowest eigenvalue consistent
with the applied constraints. kI follows that once equilibrium is resched, the lowest
cigenenergy can be estimated by averaging the reference energy aver a long sequence of time
sleps,

Another way to look at the effect of the reference cnergy, is that when the population is

stabilized, the equilibrium wave function w(7) is being rescaled st each time step by the
factor up{E,ﬂr} A betier method of finding Eg, then, is 1o pick a constant value for the total

population weight. [ w(F)dF , and record the multiplication factor R required to renormalize

the population weight at each time step. The reference energy is then given by

E,==InR/AT (4]
and the cigenenergy can be estimated by averaging Eg over long t.

Our approach to simulating quantum excited stues is (o divide the system into separate
lobes or regions of configuration space. 1t is important o be able to independently estimate the
cigenenergy of these regions. The reference energy is a valid cigenencrgy estimator even if
computed in a partial region of a stationary wave function, since the rescale factor R must be
constant throughout. If R were different in one region than another withinw{7), the wave
function would be changing shape and hence not be stationary, The concept of a local
eigenenergy. £, can be defined as the equilibrium reference energy in a local region of
wirF).

The DMC method yields wave functions for a stationary state. In this case the averige
potential energy for the population of replicas - which is not the same as the quantum
expectation value - is also an estimator of the comresponding eigenenergy, This result can be

shown by integrating the Schridinger equation aver some region of configuration space:
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Using Green's theorem, the integration of V2w(F) is obtained by integrating the derivative

of w(F) across the nodal surface:

| I -
£ jwwg "~ _!"F,,Ip‘[r].di—-lf (6)
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15 the average poiential energy of the wave function within the region. In the case thm the
region of configuration space containing (7] 1s unbounded, the wave function and its
derivative musi vanish as 7 — ==, and the average potential energy of the entire wave function
1% the eigen energy of the stationary state.

Practically, ¥ is often a poor way 1o estimate the energy of the system. In the case of an
antisymmetric wave function for example, the expression for ¥ may be a limiting ratio of
two vanishing functions. Such guantities are very difficult 10 estimate numencally. In
cigenstates with the same aumber of positive and negative lobes, [ (77 cenainly becomes
small, increasing uny numerical uncertainty in a statistical estimate of V . Furthermore, in our
algonithm, to be discussed below, it is necessary 1o determine independently the local energy

in each lobe of the wave function. In order to use V' as a measure of local energy one must be
able 1o estimate the gradient of the wave function ol the boundary of the region of interest, as

shown in Equation 6, This derivative is a difficult quamtity 1o accurately measure from o
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Monte Carlo simulation, For these reasons, ¥ is not used as an energy estimator in the

following techniques.

IV. DYNAMIC NODE SIMULATION

All methods for obtaining excited state wave functions and energies rely on applying
constraints such that the ground state of the constrained system corresponds to an excited state
of the unmodified system. Several constraint methods are available, but cach has its
limitations and much research is still needed w develop more efficient and Mexible
algonthms.

Some current techniques include orthogonalization constraints [4.5], basis-set approaches
coupled with quantum Monte Carlo for iniegral sampling [3], fixed node simulations [2]. and
nodul relaxation schemes [3]. In the present paper we develop an effective dynamic nodal
constraint approach.

Nodal constraint DMC algorithms rely on a prior knowledge of the location of the node,
and the difficulty of determining nodal surfaces is its principal limitation. An absorbing wall
which confines the replicas to one region of configuration space is placed on the nodal
surface. During the simulation, replicas diffuse, grow, and decay as usual bul with the
musdification that those which traverse the node meet their demise; their weight is set 1o zero,
When such crossings occur, the replica with the largest weight has its weight reduced by half
and is copied into the memory location of the deleted replica. The two replicas then propagate
independently. Since the DMC algorithm is a finite time step simulation, there is a non-zero
probability that a replica will cross and then recross a node within a single time-step.

Anderson [2] shows that the recross probability is:

_—ﬂilr‘_—l‘] (8}
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where @' =2D,AT is the vanance and D, the diffusion coefficient along an axis normal to
the node, and |F| and |7 | are the projected distances of the replicas onto this axis before and
after the time step. Al the end of every time step, the weight of cach replica is attenuated

according 1o Equation 8. Withowt this comrection, the recross error can be guite significant for

DMC calculations.,

The starting point for dynamic-node DMC is the simple fixed-node algorithm. Hard
ghsorbing walls are placed along the guessed location of the nodal surface. However, rather
than having one ensemble of replicas, multiple ensembles of replicas exist such that each
ensemble is located in a separate region of configuration space, each region being bounded by
a nodal surface. That is, every lobe in the wavefunction 1s modelled by its own ensemble of
replicas. For example, two ensembies are established in a simulation of the first excited state
of the one dimensional harmonic oscillstor, one to the left and the other 1o the nght of the
node. The two ensembles are then treated as weakly interacting simulations. The key to the
method is to monitor the difference between values of £y, from the two lobal simulations as a
function of the location of the node, If the location is correct, the estimators will give identical
results and no adjustment is necessary. However, if the location is incorrect, then values of
E,. predicied by the two ensembles will be different. The algonthm introduced here
incorporates a scheme for changing the location of the node so as o converge the energy

estimates from the two simulations,

Given the siochastic nawre of DMC, the instantaneous values of E,, will differ from tome
step 1o time step dueto fluctuations. It is good practice 1o average E,.. in cach lobe of the wave
function over several time sieps, before shifiing the position of the node, in order 1o reduce
statistical fluctuations in its position. If the absorbing node is shified 1o often. the simulation
will over-estimate E,. in all nodes by effectively reducing the volume which w{F) can

oCCupy.
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To determine how to move the node, we used o particle in a one-dimensional box as the

starting point. The ground state energy for such a system is;

E=o—7 (9

where L is the length of the box and m is the mass of the panticle. If the edge of the box is

moved a small distance Ax ., the expression for the change in energy is

h
le

AE = - Ax (10)

Hence for small distances, the change in energy is directly proportional 1o the nodal
displacement.
Suppose we now insent an absorbing barrier at a point X in the box, 1o give two boxes of

length X and L-X. Simulations are carried out in each box to give local eigenvalues £ and

E,. .say. We now move the location of the absorbing barrier by an amount

Ax=-¢(E} - E]! )=-eAF (11

where the proportionality constant, & is determined in trial DMC simulations to optimize
convergence of the energies. Simulations of Ey. in the new boxes will give values which are
closer, Proceeding in this way, we will reach the condition E_ = E/ . at which point the
boxes will be of equal length, L2, This value of E. corresponds 1o the first excited state
energy of the original box.

The elements for a dynamic-node algorithm are now in place. With the nodal surface
placed in some nitial configuration, the replicas diffuse. and grow or decay. as in a simple
DMC simulation. At the end of a shon simulation, the nodal displacement 15 calculated

according 10 the above rule, The difference in energy estimators between ensembles on
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opposite sides of each nodal surface 15 determined, multiplied by £ and the surface is then
moved along the surface normal by an amount given by this product. The negative sign in the
algorithm indicates thm the node moves in a direcuon such that the higher energy lobe
expands and the lower energy lobe contracts. This algonthm makes three assumptions about
the nodal characteristics: (1) the nodal surface has a simple shape, such as o line, plane, or
sphere; (2) that the node moves such that this shape i1s conserved; and (3) that the direction in
which to move the node is such that one volume always contracts and the other expands, A
simple sysiem in 10 these conditions apply is a one dimensional Morse oscillaior. We consider
more complex surfaces, where the shape of the surface must also be allowed to change, luter

in the paper.

V. ONE DIMENSIONAL MORSE OSCILLATOR

The Morse oscillator potential

Mix)=Dle™ 1)’ (12)

was chosen because it s not symmetric and is ofien a good approximation io the radial
potential between interncting particles. Each simulation used the same parameters. In atomic
units, the well depth D = 10,0, the exponential factor i@ = 0.200, and the particle mass, m = 1.
The eigenvalues and eigenfunctions of the Morse potential are known analytically, and the
nodal positions and energies of the ground state and first three excited states are given in
Table | for comparison with the DMC resulis.

Tio initiate the excited siate simulations, nodal poinis were chosen at intervals of | atomic
unitl spaced around x = (. Replicas were then generated in a Gaussian distribution ahout the
origin. If a replica was found 1o be in a position x < N, the coordinaie of the first node, it was
considered to lie in Region L If it was in a region N, < x < Nj, where N is the coordinate of

the second node, it was labelled as Region I, and so on. The process of positioning replicas
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was continued until there were 2,000 replicas in each lobe of the wave function being
simulated. All replicas were given the same initial weight, 0.0005, so that every lobe had the
same integrated weight of 1.0, Neither the initial positions of the nodes nor those of the
replicas were of any great consequence as all change dramatically over the first few iterations,
bringing the nodes and the lobes of the wave function close to the analytical solution. It is

much more difficult 10 accurately estimate the eigenenergy.

A time step of 0.02 E' was chosen for all Morse simulations. Finding a good valuc for
the quantity At is an art. If it is wo small, the simulation tukes a long time 10 reach
equilibrium. Even when the system is in steady state, oblaining accurate values of the energy
requires the averaging of many independent configurations of the replicas. For overly small
time steps, it takes many iterations (o achieve a new independent replica arrangement and
little is leamed from the many calculations between these configurations. On the other hand, if
the time step is too large, the split operator approximation described in Eq. 3 starts 1o become
invalid and the simulation will yield an antificially inflated estimate of the energy. A good rule
of thumb 1s that for a valid simulation, one should not see a variation in the energy estimation

as At s reduced,

The simulations were done in three stages. A first run of 5,000 itcrations, in which £ was
chosen to be 2 x 107, served to bring the wave functions and their nodes close to their final
configurations. The recross correction, Eq. 8, was applied for higher accuracy. Local energies,
Eje. were estimated for each lobe independently, by calculating the constant required 1o
renormalize the sum of the weights of replicas in that lobe, Eq. 4. To reduce coupling between
random fluctuations in the energy estimators and movement of the nodes, the energy, E... in
cach lobe was averaged over 5 time steps before moving the nodes. Every node was then

shified according 1o the difference in the average values of E;, for the lobes on either side of

the node. For example, for the first node AN, = —¢ (E. - £/ ) according to Equation 11.
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In the second stage, simulations were run for each lobe (o obtain a time averaged value of
the energy Ej. over 20,000 iterations. To start the simulations, each replica was split inlo five,
yielding 10,000 replicas in each lobe. The energies averaged over 10 time steps before shifting
the nodes, and £ was increased to 5 x 107 to compensate for much smaller differences in the
energies berween lobes. This stage of the simulation resulied in well-converged energies for
the ground and first excited states, bul the second and third excited stale energies had not yet
reached equilibrium. A third stage of simulation was then done on each system using the same
parameters, The results of the final simulations are displayed in Table | for comparison with
the exact values. Uncertainties were computed by finding the number of independent
configurations within the 20,000 jterations and evaluating the standard ermmor of the energies
and nodal positions within this set.

Generally, the DMC results agree with the exact values to within their statistical
uncenainties. In the third excited state, there 13 some evidence of the DMC simulation
overestimating the eigenenergy. This defect is due to random movements in the nodal
positions, which effectively reduces the volume of the lobes. These fluctuations also bias the
position of the nodes, because a change in the volume of a lobe has more effect in regions
where the potential 18 changing rapidly. The simulation for the third excited state was repeated
using & smaller value of £ and a larger number of timesteps between nodal shifis. These
changes removed the slight discrepancy between the DMUO and the theoretical enerpies.

As can be seen from Table | the simulations yielded good values of the Morse potential
eigenenergies and nodal positions. However, a histogram of the final wave funciion
constructed from the global distributions would nol be comect. The normalization constraint
applied at the end of every timestep ensured that the sum of population weights in every lobe
was the same. If wavelunctions are needed, this is incorrect on wo counts. First, it is the sum

of the squares of a population histogram that must sum to unity, and second the sum of
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weights within different lobes in general will be different. In order to generale the wave

function, the populations in each lobe must be scaled such that the slopes across each node are
continuous, and rlqur{r‘*]’df = |, This process is described in more detail below, With these

procedures applied, Figure | shows the ground state and the first two excited states of the

Morse Oscillator.

VL HYDROGEN FLUORIDE

As a second test of the dynamic node algorithm, the distomic molecule HF was modelled
in three dimensions. Simulations were conducted in the center-of-mass frame. The

Hamiltonian operator, in radial coordinates, has the following form:

Ll..&_:l. +..i...[ ! i . Ei _I__i +|‘.rll {13}
'z_urar’r | singag Sﬂ+ﬂn‘ﬂﬂﬂl’ f

where u = 1744.68 for HF. The potential used was s Morse oscillstor:
e )}
Vir) =V, (1-e ) (14)

with V, = 0.18379, a = 1.29938, and r, = 1.73278 [5]. This choice of interaction allows us to

make a ready comparison with exact results.
In order 10 compare DMC nodal positions and energies with analytical values, the rigid

rotor approximation was used. The eigenfunctions of the Hamiltonian are of the form

¢ ,.[r.6.0)=R(r¥"(0.9) (15)

with

ma:%xjﬂ (16)
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where X.(r} are the eigenfunctions of the one dimensional Morse oscillator and r=(8.p) are
the spherical harmonics. Within the rigid rotor approximation, the eigenvalues ure the sum of

the Morse vibrational energies and the rotational energies:

E. =E, +B2ndll+1) (1M

where 8. the rotational constant for HF, is 1.5191 x 10° E,,

In the following subsections we describe the simulations and summarize the results. The
nodal positions are well determined within the rigid rotor approximation. Simulations were
run for the following ro-vibrational states: (1) v=0,1= £ 1.(2)v=0,/=2,(3)v=1,/=Dand

= 1,I=1.

For the first excited rotational state (v = 0, [ = 1) there are three degenerate eigenvalues,
each having one planar node, lying in the xy, 12, and vz planes respectively. The dynamic node
simulation in this example had a nodal barrier that was constrained 1o be parallel o the xv
plane. The nodal adjustment moved the entire plane along the 7 -anis while keeping the planc
parallel to the xv plane, Thus, the simulation was analogous 1o the one dimensional case with

o paint node.

The other excited rotational state to be simulated (v = 0, | = 2) has five degenerae
eigenvalues, We simulated the state corresponding to the 2Py, state where both nodes are
planar and lie in the xz and yz planes. This creates four nodal regions, although only three are
required to move the nodes; therefore, the three simulations were run in the quadrants (-x.-y),
(-x¥), and (zy), labelled L, 11, and 11 respectively in this paper. As with the one-dimensional
example, simulations of lobes | and [l were coupled as were lobes I and 1T The nodes were
constrained to remain parallel 1o the axial planes and were thus moved along the & and ¥

ANCS.
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A simulation of the lowest energy vibrational state (v = 1, | = 0) requires a radial node,
which is simply a sphere with its center at the center-of-mass. Movement of this node
involved a simple expansion or contraction of the nodal radius by an amount Ar, while the
center remained fixed. This breathing motion caused a volume change in the lobes that scaled
as Ar', and raised the question as to whether or not Eq. 11 can be applied unchanged. We
apphied it nonetheless. and found that this algorithm was able to converge the energies, as
shown in the following results. Most likely, there are more efficient ways to achieve

CONVErgence,

The lowest energy state with both vibrational and rotational excitation (v = 1, I = 1) has
hoth a spherical node centered at the center-of-mass and a node parallel to the xy plane. As
with the [ = 2 example, three simultancous simulations were run with the replicas placed in
the following regions: (1) -z hemisphere and inside the region bounded by the spherical node,
(I} in the +z hemisphere and inside the spherical node, and (II) in the +2 hemisphere and
outside the spherical node. Simulations II and 111 were coupled and controlled the expansion
and contraction of the radial node. Simulations | and [ were coupled and controlled
movement of the planar node: it moved as in previous examples, so that it was constrained 1o
remain parallel with the xy plane and moved along the 7 -axis.

All the results for HF are given in Table 2. The simulations were based on ensembles
containing 10,000 replicas within each nodal region, a time step of At =05E,", and local
energies, Ei., which were averaged over 20,000 time steps. The recross comection was
applied to allow for the presence of the nodes and to achieve higher accuracy. In all cases, the
nodes were given arbitrary initial positions; all converged to the correct location. Again,
improved sccuracy wis obtmned by reducing the nodal adjustment parameter and by
decreasing the time step. In this simple sysiem, dynamic-node DMC easily dealt with multiple

nodes and nodes of different shapes,
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VIL NODAL SURFACES OF UNKNOWN TOPOGRAPHY.

The results of the previous sections are of limited use for more complex nodal surfaces,
is not often that & multi dimensional problem has a nodal surface that can be parameterized
with a single variable. In order 1o deal with more complicated nodal surfaces, additional
constraints can be applied. The QMC algorithm used in the previous sections consiruned Ey,
be the same in every lobe. Nodal boundaries were adjusied dynamically to meet this
consirainl. Another property which can be employed as a constraint is that the slope of the
wave function must be continuous across the nodal surfaces. By making use of this additional

constraint, we are able 1o adjust the shape of the nodal surface as the simulation progresses.

We construct a trial surface which is composed of a set of small hyperplanes, s, which
form & continuous surface, The derivatives taken along the surface are not necessanly
continuous. During the simulation, these small hyperplanes are moved with respect (o some
origin according to two constraints. First, the full surface is displaced without change in shape
in arder 10 bring values of Ej. in all lobes 1o the same value. The basic algorithm for this step
has been described. Secondly, the small hyperplanes are displaced slong a direction normal (o
their surfaces in order to achieve continuous slopes across the whole nodal boundary. After
making such an adjustment, the directions of the surface normals may need changing to ensure
continuity along the nodal boundary.

In order 1o achieve continuity of slope, we note that in a properly normalised wavefunction,
the flux of replicas crossing the nodal surface from the positive side is equal to that from the
negative. In the present simulation, the constraint on Ej, is achieved by demanding that the
population of replicas in all lobes is identical. We noted earlier that with this construnt,
simple histogram of replica positions does not give a continuous, normalized, wavefunction.
This problem needs to be taken into account when irying o equalise fluxes, Note that the

replica weights within a single node are correctly scaled with respect 1o each other.
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Accordingly, we first calculate the fractional Muxes of particles crossing from positive 1o

negative. ", and from negative 10 positive, I

=W 1Y w (18)
fo=W 1XYW, (19)

where W' are the weights of all replicas crossing surface element s, in the time interval.

We then compute the fractional fNluxes

fi : fi
Fle=—" F =—1— (209
x l'rl ""!' - -'ri- +-ri
The element of surface s is then moved an amount Ar, along its surface normal sccording to

the formula

at, =—(e,AE, e, (F - F)) (21)

The scaling factor g is chosen to optimise convergence. Special constrainis are needed at
the extremities of the surface, and the second term is ignored for cases where no replicas cross
from either direction. We have also explored modifications in which the planar surface s, is
replaced by a quadratic spline, allowing continwity along the nodal surface 1o be imposed
miore easily,

The new dynamic node algorithm solves one purt of the excited state problem for DMC
simulations, that of making the nodal surface flexible so it can relax into a fairly general
shape. It does not solve the problem of simulating excited states of the same symmetry which
have the same number of lobes as a state of Jower energy. In such cases, additional
orthogonality constraints must be imposed. To explore the algorithm, and its successes and

limitations, we simulaied excited vibrational states of the water molecule.
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VIl A THREE DIMENSIONAL SYSTEM: THE WATER MONOMER
The water molecule was simulated in a potential surface developed by Reimers and
Watts [6] and later modified by Coker, Miller and Watts [7]. In this model, the potential is

written in terms of three local mode coordinates:
1
.;L=R,:ns[i[ﬂ-ﬂ.,]]-ﬂ.,, (22)

5 =R, m{%(ﬂ—e.}]—ﬂu. 23)
5 =[{""*_;;EQ]“[% [ﬂ‘ﬂu]]i (24)

where R, R;, and @ are the bond lengths and bond angle respectively. Ro and & are the
corresponding equilibrium values. The potential surface is expressed as a sum of three Morse

potentials and a simple quadratic coupling between s and sz

1
V[=1-1:+=J=Z.ﬂ.[|*f“"]l+I.:-':l; (25)

dm|
Parameters in the potential were determined by fitting a large basis set vibrational calculation
o 56 vibrational levels for H;O, D0, and HDO, and have the values D; = D; = 0.20916, D,
= 0.15660, a; = @; = 1.1331, @ = 0.70600, R, = |.808E. 6, = 104.52%, and f;; =0 0067622,

all in atomic units.,

For comparative purposes, approximate eigenstates for this potential surface can be
constructed by assuming a) that the quadratic coupling term between ) and s, is small; and b)
that the mternal coordinates are rectilinear and the kinetic operator is diagonal. In this
approximation, the molecule has three independent modes of vibration, and the full wave
function can be expressed as a product of one-dimensional Morse oscillator states in s, s; and

53 Reimers and Watts [6) have shown that the eigenfunctions obisined in this way are close 1o
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those of the converged states. The rectilinear components of the local coordinates s, and s; are
projections. of the two hydrogen atoms onto the equilibrium bond vectors. The third
coordinate, s, describes the relative displacement of the hydrogen atoms tangential 1o the
bond vectors and corresponds to the bending mode in normal coordinates. Since we will
describe the molecule in local coordinates, we note that symmetry constrains the wave
functions to be symmetric or antisymmetric with respect to exchange of the coordinates s; and
53

Following Reimers and Wans [6], the wavefunctions will be described in terms of the

quantum excitations in each of the local nmrdinm.|n, A, .u,}. For example, if the molecule

has one quantum of cnergy in the local mode s, the state is labelled [0,0.1). Under the

assumptions: described in the previous paragraph, a state |n) is the n™ eigenfunction of a
Morse potential in the associated local coordinate. In the case of stretch excitations, 8y and s;,

it is impossible (o excite an identified O-H bond as the symmetry condition would be violated,

For example, the state [1,0.0) is not a valid quanium state of the system whereas the (un-

0.10) and |1.0.0}, = |1,0,0)-

normalized) symmetry adapted states |1,0,0), = [1.0,0) + 0,10}
ire true eigenstates.

Figure 2 shows the low energy wavefunctions of the water monomer calculated using the
basis. states of Reimers and Waits [6], The plois show projections onto the s;s; plane for all
stites with less than three quanta in the sireich coordinates, Bend excitations in the s
coordinate do not alter the shape of these plots since 55 is not coupled to the stretch
coordinates by the symmetry constraint. The 3D wave function is the product of the wave
functions shown in Figure 2 and the appropriate Morse oscillator function in the s, coordinate.
It is interesting 1o note that the projections onto the 5.5, plane can show rather complicated

nodal surfaces due 1o the symmetrization of the Morse states. It is this propeny of the wave
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function that makes the water molecule a good test for the dynamic node Monte Carlo
method.

Exact solutions to the full potential described in Equation 2 were calculated by Coker,
Miller, and Watts [7] using a variational technique, starting from the reference states shown in
Figure 2. The cigenenergies (< 9000 cm ') of the converged solutions are given in Table 3.
Although the exact wavefunctions cannot be expressed precisely as a product of independent
Morse states, they are described using the same quantum numbers. Differences between the
reference and converged stales arise from the coupling between 5, and s; as well as off-
diagonal kinetic energy terms, and are small,

Figure 2 can be used to begin a classification of wavefunctions in terms of geomeiry rather
than symmetry. Both classifications are used in the following discussion. We see from the
figures that the nodal surfaces are of two basic types, open and closed. A good example of &
state with a single, open, nodal surface is |1,0,0),. whose nodal surface is defined by the plane

8; + 53 = (). Ouher states having a single, open nodal surface are (00,1} and |1.n.n}. It is nlso

possible for a state 1o have a single, closed. nodal surface. For example, the state Il.ﬂ.ﬂ} . his o
radial nodal surface with three maxima on the outer surface, as is seen in the figure. A
common characteristic of the states with a single nodal surfuce is that there 15 one positive

lobe and one negative lobe. A more complex geometric surface consists of the intersection of
two open surfaces, for example the states [2,0,0) and [1,10) . Geometric constraints of this

type can be used o reduce the flexibility of the assumed nodal surfaces, although it is possible
for open surfaces to become closed, and vice versa dunng the simulation. In addition o the
geometric classification, the evolving nodal surfaces should also be subjected o appropriale

symmetry constraints.
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The DMC simulations were always conducted in stages. To begin, a fairly small number of
replicas systems were simulated with a relatively large time step, 1o bring the simulation close
to equilibrium. The conditions used during this process are relatively unimportant and will not
be given for cach simulation. For accurate calculations, between 1,000 and 5.000 replicas
were simulated over 10,000 iterations with a time step of 2 £.'. In the diffusion step, the
soms were displaced in laboratory-fixed canesian coordinates and at the end of every time-
step the axes were shified to maintain the oxygen atom at the origin. After the simulation
reached equilibrium 30,000 replicas were evalved over 20,000 iterations with a time step of
0.5 E,'. We first simulated the ground state, |0,0,0) -obtaining an average reference encrgy of
0.0210661+6x (0" E, or 4623.5¢1.4 em’. The converged variational ground state energy
reporied by Coker ef af [7] is 462302 cm '

In order 10 simulation the excited states, the following symmetry coordinales were

introduced to define nodal positions:

U=y 41, (26)

VeEg -, (27)

The antisymmetric stretch, [1,0.0),, is the simplest excited state to simulate because its nodal
surface is forced by symmetry considerations to lie in the plane 5, = s;. For any antisymmetric
stateof the water molecule, the wave function by definition must change sign at 5; = 5; and
hence its nodal surface must include this plane.

At first the [1,0,0), simulation was run without the recross probability correction. After very
long runs and using a small time step, the energy converged to a value more than 200 cm’
lower than the converged variational value of 3755 cm . This result led us to use the recross

probability for all future simulstions.
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In order 1o compute the recross probability for a replica, it is necessary 10 know, on
average, how far it will diffuse towards the nodal surface in a single time step. For the |1,0,0),
state, the direction normial 1o the node is parallel to the vector i . The diffusive displacemenis
are calculated in canesian space, and it is a tedious task to ransform the kinetic operator into
the local coordinates. To avoid this process, the diffusion length in the directions &, v, and
5, were determined by propagating the system and recording the value of the displacements in
cach of these directions. The diffusion length was calculated based upon the standard
deviation of these displacements and found to be (in atomic units) [, = D, = 56x10" and D,;
= 1.9x10™ It was also found that the measured diffusion lengths did not vary sigmificantly
with respect to position in the wave function, and they were therefore treated as constanis.
Using this correction, the |1,0,0), simulation was run with 10,000 replicas over 200,000
fterations of 0.1 E, time step. An average excitation energy of 37518 £ 2.7 em’ was

calculated in very good agreement with the vanational value.

The |1.0,0}, state belongs to the cluss of functions containing two lobes divided by an open
nodal surface. The sate for which the nodal surface is defined by the plang & = 0 is not the
lowest energy configuration for systems within this class. The [0,0,1) and [1.0,0), states also
have single, open, nodal surfaces and have lower eigenenergies. However, symmetry
constraints allow the |1,0,0), state. 10 be simulated directly using the constraint u = 0. When
the planar nodal surface v = 0 was allowed 10 translate and rotate in order 1o balance weight
fluxes, but with no other constraints, the simulation converged towards the lowest energy in
its peomeinc class winch s the ||1I,l.'l.l,'lI bend maode.

The first symmetric bend state, |0,0,1) is the lowest excited vibrational state of the
molecule. Using the approximations described above, o nodal plane was placed initially at

53 = 0. Ensemble | was established with values of 55 < 0 and Ensembile Il with s; > 0. During
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the simulation, the planar surface was forced to remain normal to the 7, -axis, but allowed 1o
move along this axis as in the first vibrational state of the hydrogen fluoride molecule, A
simulation of 10,000 replicas over 100,000 time steps with Ar = 02E,' yielded an

equilibrium value of 0.0334 + 0.0003 for the displacement of the plane along the 7, -axis and

un energy of 1594.9 + 2.0 em”. This value is close to the converged variational value and
indicates that the planar nodal surface is near the exact surface. However, some improvement
in the approach is needed 1o get the correct value,

Since the local coordinates are not orthogonal, and the kinetic energy operator is not
diagonal in the local coordinates, we expect the exact nodal surface to deviate from the planar
approximation. The |0,0,1) simulation was repeated, incorporating the dynamic mode method
based on a flexible nodal surface. The nodal surface was divided into a 32 x 32 rectangular
grid. The array spanned the region -1 < w < 2.5 and -2.5 < v < 2.5, with displacements along s,
associated with every grid point. A continuous surface was formed by linearly interpolating
values for sy within the array panels. This characterization of the nodal surface retains some
limitations as it does not allow for shapes such as folding. It 15 possible, however, 1o
reparametenze the nodal surface during the simulation if necessary, Our parameterization
does satisfy the necessary condition that there is one parameter, numely s,, along which one
ensemble is always expanded and the other always compressed. For this and all other
symmetnic states, the replica density was increased by recognising that the state is symmetric
sbout v = 0 and runming the simulation in the region v > 0. Any replica which moved 10 v < 0
was reflected about the plane v =10,

The simulation proceeded, allowing 10,000 replicas to diffuse on either side of the nodal
surface. After each replica was moved, its weight was multiplied first by the potential operator
and secondly by the recross probability. Bt is time-consuming to calculate the recross

probability for a replica near a complicated nodal surface. We made an approximate, yet



177

adequate, calculation of this probability in the following manner. The u and v coordinates of
each replica locate it directly above or below, in the &, direction, one panel of the nodal
surface. Before a replica was moved, that panel was identified, and we determined on which
side a replica was located. 1f the replica crossed the panel during the diffusion step, it was
killed and its weight added io the flux crossing the panel in that direction. Otherwise, the
distance of the replica 1o its associated pancl was computed before and after the time step so
that Eq. 8 could be applied. and the replica weight attenuated accordingly. Since the
atienuated portion of the replica was lost due 1o its chance of crossing the nodal surface, the
lost weight was also added to the estimated flux across the panel.

The replicas were allowed to diffuse for 100 time steps before the nodal surface was
shifted Over this time, the local energy of each ensemble was averaged, and the flux of
replica weights from each side of every panel of the nodal surface was summed. As required
by Eq. 22, an estimaie of the population fraction was computed based upon the rutio of the
total fluxes to either side of the node. The entire nodal surface was shified by a uniform
amount in 55 based upon the difference in local energy across the barrier, Each panel was then
shified based upon the relative flux of replica weight on either side, leaving the average
position of the node fixed in 55 The simulation proceeded until the nodal surface reached
equilibrium and the energy was calculated as usual. The final energy of the simulation was

15974 £ 3.3 cm”’ and the nodal surface is shown in Figure 3.

A point 10 note is that the flux of weights across a nodal panel in any direction can be
estimated. When the panel is properly located, the nett flux through its surface is zero. In the
simulation described sbove, the flux and recross corrections were calculated only if the
contributing replica remained above or below the same panel over the course of its diffusion
step. This approximation saved having to determine which panel a replica crossed, or which i

was closest to, if it made a jump spanning one or more grid points, In practice, the gnd points



178
were sufficiently separated that on average the replicas take many times steps to move from
one panel to another.

The two excited states simulated so far fall within the class of solutions with a single, open,

nodal surface. The [0.0.1} bend is the lowest energy state which can be simulated without any

constraints other than the existence of an open nodal surface. The |1,0,0), antisymmetric
stretch is the lowest encrgy state in its symmetry class which lies within this geometric class
of nodal surfaces. It, oo, could be simulated without approximation. We could simulate the
|1,0,0), symmetric streich as in the previous simulation, by starting two ensembles cither side
of a planar nodal surface constrained 1o be parallel 1o the plane u = 0. If this constraint on such

a simulation is removed, the surface rotates into the uv plane and the wavefunction evolves 1o
the lower energy [0,0,1) bend state described earlier. This result is not surprising as the

construints are then no different to those used to simulate the [0,0,1) state. The symmetric
stretch swate can be simulated by imposing the additional constraint that it must be onthogonal
o the bend. However, for this simulation we return 1o the independent coordinate
approximation and assume the nodal surface to be independent of 54 and a function of & and v
only.

The tnal nodal surface was initially placed at w = 0. Figure 2 and symmetry arguments
show the approximate surface 1o be some curve symmetric about 5; = s;. The nodal surface
was defined by 40 points (i, v) equally spaced in the region 0 < v < 2, Instead of being made
up of rectangular panels, the panels were strips extending infinitely in 5, The simulation was
brought 10 equilibrium and the energy of the ensembles was then averaged over 30,000
iterations and found 1o be 3653.3 + 2.5 em . The positions of the panels were also averaged
over the simulation and are shown in Figure 4. The solid line running through the surface

poants is the node of the pure Morse stale deflined by
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[100), = (J1)oo) + o) 1Ho)W2 =0 (28)

in terms of the symmetry coordinates w and v. The benefit of the dynamic node lechnique can
be seen in the deviation between the simulation and the pure Morse surfsces. The shifi
between the two is prnmarily due to the [j; coupling term; finding the position of the true

nodal surface analytically is difficult, if not impossible.

IX. FUTURE DEVELOPMENTS
Before any quantum DMC simulation is staried using the methods described in this paper,
the basic geometry of the species of interess must be known, Such information includes the
number of lobes in the wave function, and how many nodal surfaces divide these lobes
topologically. A major limitation is that in general only the lowest energy states within each
geometry can be calculated. This is not an issue for one dimensional problems, for which
there can be only one wave function in each geometry, but in higher dimensions the situation

becomes complicated. For example, in the full treatment of the water excitations, the class of

wave functions with two lobes include the |0,0.1), 200, states, and

1.0.0},. [L0.0).,
possibly others. The |0,0.1) bend and the |1,0.0}, antisymmetric stretch states are the lowest in
energy of their respective symmetry classes and can be simulated directly. The |1.0.0), and
|2,0,0), states cannot be simulated without appropriate orthogonality constraints with all other
stites of lower energy within thal geomeltry.

A method for onthogonalisation was described by Coker and Wans [6]. They constructed
histogram wave functions for lower states and computed the dot product between siates by
summing the product of histogram values over the wave functions. A major limitation of their

approach is that the replica density must be high enough 1o significantly fill each element of

the histogram. This is not a problem in low dimensions, bul even with 8 modesi 50 bins in
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Table 1 Dynamic node Morse Oscillator Simulation Results

Encrgy Mode
Suate Lobe Average Exact DMC Exnc
|o) E=0442544.10°  04425£410° 044221
= | 2068 4 5 107
[ By * ‘u‘ 12068 £ 310" 1296648 N, =0.228M+ 01007 122876
Eg= 1.2960 £ 4.1
E ]
Ep= 21110£ 510 N, =-0.3727 £ 2,100 017252
12) Ex=21101127.00° 211 2010* 211107
4
Ey= 28863 £ 610"
13 = 28864 £9.10° N = 07631 £ 210" 0, 76295
= . i
Eg=2i862191g¢ OEAIT MBS Nepssiotzit 0sHm
Er= 2RR61 4 107 MNy= 199262 310" I 59321
Table 2 HF dynamic-node DMC resulis
Energy cm ' Mihe
Ste |y, /) Lobe Average Exnct (Y . Exact
|0,0) Fo= 2429405  NM2905 20412
0,1) E=20834211  aogsss08  208S1 N, =-0001 40006 {3,000
Eg= 20858 £ 1.3
e k2 N, = 0,002 £ 0.007 00000
|02) Ep=22704%16 216794009 21689
By = 21679 1.5 N, = (L0 £ 0.006 {1 ()
Ey=S5970.5 ¢ 2.1
E=t0113%14
N, = 0007 £ 0.004 00,0000
IR} Eg= 60118215
LUTR R LU P I VAR AT IR A L7712

Em=00115214
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Table 3 Variational energies of the water monomer excited states, n?cmuwd from the
{000} ground state reference energy of 4623.02 cm

State Energy
|0.0.1) 1,595
|00.2) 3,152
109, 6%
|1.00), 3,755
|0.0.3) 4,663
[1.0.), 5.252
I 0.) 5,343
[10.2), 6.807
|1.0.2), 6.889
|2.00), 7.201
|2.00), 7,250
|1.1.0) 7.445
[2.04), B.762
|2.04), 8.807

Amplitude
("3) renusiod

Position (Atomic Units)
Figure | The first three Morse oscillator wave functions and the Morse potential
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Figure 2 Approximate wave functions for the water molecule projected onto the s,5; plane
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Figure 3 Nodal surface of the |1,0,0) bend state of the water molecule
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Figure 4 Nodal section of the |1,0,0) symmetric stretch of the water molecule showing how it
is preturbed from the node of the pure Morse state
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