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A method for accelerating molecular dynamics simulations in rare event systems is described. From
each new state visited, high temperature molecular dynamics trajectories are used to discover the set
of escape mechanisms and rates. This event table is provided to the adaptive kinetic Monte Carlo
algorithm to model the evolution of the system from state to state. Importantly, an estimator for the
completeness of the calculated rate table in each state is derived. The method is applied to three model
systems: adatom diffusion on Al(100); island diffusion on Pt(111); and vacancy cluster ripening in
bulk Fe. Connections to the closely related temperature accelerated dynamics method of Voter and
co-workers is discussed. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880721]

I. INTRODUCTION

Adaptive kinetic Monte Carlo (AKMC) is a method
which applies dynamically constructed rate tables to kinetic
Monte Carlo (KMC) simulations.1 For each unique state that
the system visits, searches are performed on the potential en-
ergy surface (PES) to find low-energy first-order saddle points
leading to adjacent states. Saddle searches have been carried
out with minimum mode (min-mode) following algorithms
such as the dimer method,2 Raleigh-Ritz minimization3 as
in the hybrid eigenvector following method,4 or the Lanc-
zos method as in the activation relaxation technique (ART)
nouveau.5 Given the geometry of the saddle point, rates can
be efficiently calculated for the forward and backward reac-
tions using the harmonic approximation to transition state the-
ory (HTST). In this paper, we compare the efficiency of min-
mode following saddle searches to high temperature molecu-
lar dynamics (MD) saddle searches.

When using a min-mode following method, initial con-
figurations are generated by displacing away from a minimum
energy configuration. The choice of which degrees of freedom
to displace (e.g., under-coordinated atoms) and the distribu-
tion of the displacement (e.g., a Gaussian distribution with a
predetermined variance) need to be determined for each sys-
tem under investigation. These parameters not only effect the
computational efficiency of the algorithm, but also the accu-
racy of the resulting KMC simulation, as the distribution of
initial configurations and the shape of the potential energy
surface determine the probability that a particular saddle will
be found. This makes it difficult to calculate the confidence
that all of the important reactive events that are relevant at the
simulation temperature have been found.

In a MD saddle search, the trajectory is confined to the
initial potential energy basin by detecting when it escapes the
basin and restarting it within the basin. The escape events
can be detected by periodically performing a geometry op-
timization to determine if the trajectory is still in the initial
energy basin. If it has exited, the trajectory is terminated and
a nudged elastic band (NEB)6, 7 and/or min-mode following

calculation is performed to locate the saddle point between
the initial and final state basins.

An important advantage of using MD over min-mode fol-
lowing methods to find saddle points is that the probability of
finding escape mechanisms with MD is directly proportional
to their rates and their relative importance in the AKMC event
table. At elevated MD temperatures, high entropy processes
are overrepresented as compared to the temperature of inter-
est, but this bias can be corrected within the HTST approxi-
mation. This is the strategy used by Voter and co-workers8 in
their temperature accelerated dynamics (TAD) method, where
escape events are found with high temperature MD trajecto-
ries and the escape times at the low temperature are deter-
mined from an Arrhenius extrapolation.

This work closely follows the TAD procedure for sam-
pling possible escape pathways with high temperature MD.
The difference is that we are not aiming to find just the first
escape event at low temperature, instead, we want to find the
entire set of escape pathways and rates that are accessible at
the low temperature for use in AKMC. Key to the effective use
of MD saddle searches with AKMC (MDSS-AKMC) is an es-
timator for the completeness of the rate table. In past work, a
confidence in the rate table found with min-mode following
methods was based upon an assumed distribution for discov-
ering saddle points, such as a uniform distribution.9 This as-
sumption can be a poor one. Even in well understood systems
where the chosen initial displacement size and direction are
close to optimal, it can be hundreds of times more likely to
find one saddle than another, even when the two events have a
similar rate.2 With MD saddle searches, however, the relative
error in the KMC rate catalog can be determined. Recently,
Bhute and Chatterjee10, 11 have shown how this can be done
using a maximum likelihood estimation of the total escape
rate. Here, we use the HTST expression as in TAD to derive
an estimator for the error in the total rate, and use this as a
criterion for sufficient discovery of the rate catalogue to es-
cape a state. In this way, we show how MDSS based AKMC
can be done with higher accuracy and sometimes even more
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efficiently than when based upon min-mode following saddle
searches. All numerical calculations were performed with the
EON software.12

II. ERROR IN THE ESCAPE RATE DUE
TO AN INCOMPLETE RATE CATALOG

The complete rate catalog C is the set of escape rate con-
stants of all N possible escape processes from a potential en-
ergy basin. Technically this is a multiset as different processes
may have the same rate constant. Initially, when dynamically
building the rate catalog, none of the processes are known. As
they are identified, they are added to the set of found events
F and removed from the complementary set of missing events
M. The total escape rate, K, is defined as the sum of the escape
rates, ki, of each process at the low temperature of interest

K =
N∑

i=1

ki,Tlow . (1)

In a KMC simulation, the probability of picking an event
is proportional to its rate. Thus, an appropriate error measure
E for the rate catalogue F is the probability of picking one of
the missing processes (in M) in a KMC step based upon the
complete catalogue C,

E(F) = 1 − 1
K

∑

ki∈F

ki,Tlow = 1
K

∑

ki∈M

ki,Tlow . (2)

Under our assumption of first-order kinetics, the mean-first-
escape-time for each process, τ i, is exponentially distributed
according to the rate ki. Integrating the distribution up to time
t yields the probability that the process has occurred by time t

p(t ; ki) =
∫ t

0
ki exp(−kiτi) dτi = 1 − exp(−kit). (3)

The probability of having found a particular set F of processes
by time t in the high temperature MD simulation is

P (F) =
∏

ki∈F

p(t ; ki,Thigh )
∏

ki∈M

1 − p(t ; ki,Thigh ). (4)

Here, ki,Thigh are the rate constants at the high temperature.
P (F) represents the joint probability of having independently
found the events in F and having not yet found the events in
M. Now we may express the average error at time t by av-
eraging over all possible sets of processes that may be found

E(C) =
∑

F∈P(C)

P (F)E(F) (5)

= 1 − 1
K

N∑

i=1

p(t ; ki,Thigh )ki,Tlow, (6)

where the P(C) represents the power set (the set of all sub-
sets) of C. A derivation of Eq. (6) is given in the Appendix.
In the case that k1,Thigh =k2,Thigh = . . .=kN,Thigh = kThigh , Eq. (6)
reduces to the simple form

E(C) = 1 − p(t ; kThigh ) = exp(−kThigh t). (7)

Note that there is no dependence upon N in this last expres-
sion. This means that if all of the high temperature rate con-

stants are equal, then the uncertainty in the rate table can be
expressed exactly using only that rate.

III. ESTIMATOR OF THE ESCAPE RATE ERROR

In an AKMC simulation, only the set of found processes
F are known. The total rate K is unknown and therefore
Eqs. (2) and (5) cannot be evaluated directly. Instead, we can
construct an estimator for the average error using information
from the set F and the MD time used to discover F,

X(F) = 1 −
∑

ki∈F

p(t ; ki,Thigh )ki,Tlow/
∑

ki∈F

ki,Tlow . (8)

The assumption made in Eq. (8) is that the average error at
time t from the known set of events F is a good estimator
for the error from the complete set C. Another way of stating
this approximation is that the events in F are characteristic of
those in C.

The estimator X(F) asymptotically approaches the aver-
age error, E(C), in two cases. The first is as t approaches infin-
ity (i.e., when all processes have been found), where it reduces
to Eq. (6). The second is as the MD temperatures approaches
infinity for systems where each process has the same entropic
prefactor (i.e., when k1,Thigh =k2,Thigh = . . .=kN,Thigh ), where it
reduces to Eq. (7).

In order to demonstrate the behavior of the estimator,
we have chosen a simple model system with three processes:
k1,Tlow =0.009, k2,Tlow =0.09, and k3,Tlow =0.9 s−1. Three cases
will be examined for the high temperature MD rates: ki,Thigh

=ki,Tlow , ki,Thigh =k
3/4
i,Tlow

, ki,Thigh =k
1/2
i,Tlow

. These cases correspond
to performing the MD sampling directly at the temperature of
interest, at a 33% increase, and at a 100% increase in tempera-
ture. In this model, the prefactor of each process is considered
to be the same. The rate constants for each case are shown in
Fig. 1.

The quality of the estimator X(F) is determined by com-
paring its average, X(C), to the exact average error E(C).
X(C) is obtained in a similar manner to Eq. (5),

X(C) =
∑

F∈P(C)

P (F)X(F). (9)
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FIG. 1. Distribution of rate constants ki,Tlow in a model system. As the tem-
perature is raised, the rate constants ki,Thigh become closer.
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FIG. 2. Comparison of the average error in the rate catalog E(C) (solid line)
and the proposed estimator of the error X(F) (dashed line) for the three dis-
tributions of high temperature rates shown in Fig. 1.

Results from analytic evaluation of Eqs. (5) and (9) for the
model system are shown in Fig. 2. In the case that ki,Thigh

= ki,Tlow , the MD rates are separated by an order of magni-
tude, which is far from the equal-rate case where the estimator
is exact. At short time this leads to significant underestimation
of the error because the fast process, which is found first, is
not characteristic of the entire set, violating the assumption of
the estimator. As the temperature is raised, the rate of find-
ing the processes increases. Importantly, the spread between
the high-temperature rates also decreases so that the error is
accurately modeled by the estimator at all times.

IV. VACANCY CLUSTER FORMATION IN IRON

Systems that have been modeled using long time scale
dynamics include materials which have been damaged by ra-
diation. One such model system that has been used to com-
pare long time scale methods is vacancy cluster formation in
body centered cubic (bcc) Fe. The system was introduced by
Fan et al.13 to demonstrate their autonomous basin climbing
(ABC) algorithm. In their calculation, the coalescence of va-
cancies into nano-voids was determined to occur on the time
scale of hours at an initial temperature of 50 ◦C and a heating
rate of 0.01 K/s. Interestingly, a similar calculation was done
by Brommer and Mousseau14 using the kinetic activation re-
laxation technique (k-ART) who calculated a time scale of
milliseconds for the coalescence – a difference of eight or-
ders of magnitude. This remarkable disagreement provides a
strong motivation for developing benchmarks that can be used
to compare the accuracy of different long timescale dynamics
methods. As such, we define such a benchmark which is close
to these previous calculations, which we then also use to test
our error estimator in MDSS-AKMC.

The initial configuration for the benchmark has 50 ran-
domly placed vacancies in a 10×10×10 a0 supercell of bcc
Fe, where a0 = 2.87 Å is taken as the lattice constant. Initially,
the average vacancy cluster size, Vn is unity (or very close to
unity). The state-to-state evolution of the system is followed
in time based upon rate constants calculated using HTST with
a fixed entropic prefactor of 5 × 1012 s−1 at a temperature of
423 K. A fixed prefactor was chosen to focus the benchmark
to the efficiency of saddle point determination. States are de-
fined as the set of points that minimize to the same geome-
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FIG. 3. The effect of temperature on the HTST rate constants in a bcc Fe
lattice with vacancies.

try. The potential energy is evaluated with an embedded atom
method (EAM) model, as parameterized by Ackland et al.15

The requirement of the benchmark is to determine the average
time for the potential energy to decrease below −7763.5 eV.
This final energy corresponds to an average vacancy cluster
size Vn > 9.

The choice of Thigh is important for the efficiency of
MDSS-AKMC. Increasing Thigh increases the rate at which
processes are found. Too high, however, and a systematic
error is introduced in X(F) due to anharmonic corrections
to the HTST rates in Eq. (8) and the loss of first-order ki-
netics. The second issue can be addressed by reaching local
equilibrium before running high temperature dynamics as in
modified TAD.16 Fig. 3 shows the spectrum of rate constants
for an initial configuration (Vn ∼ 1) and a final configuration
(Vn ∼ 10) at 423 K (Tlow), 800 K, and 1200 K. In both states,
MD at Tlow cannot be used to sample transitions on the pi-
cosecond time scale of our saddle searches. At 800 K the
temperature is sufficient to overcome the relatively low bar-
riers of vacancy diffusion in the initial state. In the final state,
however, when the vacancies have clustered, a higher temper-
ature of 1200 K is necessary.

The accuracy of the estimator is shown in Fig. 4 as a func-
tion of Thigh. In the initial state, X(F) is a good (and safe) es-
timator of the error in the rate catalogue at 800 K. At 1200 K
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tween simulations.
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FIG. 5. Four AKMC trajectories of 50 randomly distributed vacancies in a 10
× 10 × 10 supercell of bcc Fe. (a) Average vacancy cluster size; (b) fraction
of monovacancies (MV); and (c) potential energy of the minima along the
trajectories.

the harmonic approximation starts to break down, and the es-
timator loses accuracy. In the final state, 1200 K is appropriate
and the estimator is accurate. In order to overcome the high
barriers at the end of the simulation, we choose Thigh to be
1200 K. Tuning Thigh appropriately for different states would
be a natural improvement to the method.

Four independent MDSS-AKMC simulations were run
with MD saddle searches performed in each state at 1200 K,
until X(F) < 0.01, which corresponds to a 99% confidence
in the total escape rate. The average time taken to reach a
potential energy of less than −7763.5 eV was calculated as
12 ± 5 ms. Figure 5 shows the average vacancy cluster size,
fraction of defects that are monovacancies, and the potential
energy as functions of time for each trajectory. While it is
not possible to directly compare this time to previously re-
ported ABC and k-ART simulations because of differences in
the temperature profile, our calculated time scale for vacancy
cluster formation are in much better agreement with k-ART
than ABC.

V. COMPARING THE EFFICIENCY OF MD AND DIMER
SADDLE SEARCHES

Saddle searches based on MD have the advantage of al-
lowing an error estimator of the escape rate from a state. This
does not necessarily mean, however, that MD is a compu-
tationally efficient way of finding saddle points. A numer-
ical comparison of MD and dimer saddle searches is done
for three systems: Al adatom diffusion on an Al(100) sur-
face modeled with an embedded atom model developed by
Voter and Chen;17 the motion of a compact Pt heptamer is-
land on a Pt(111) surface modeled with a Morse potential;18

and vacancy cluster formation in bcc Fe, as described
in Sec. IV.

Our metric for comparing the saddle search methods is
the average relative error in the total escape rate. Here, the
escape rate is defined as the rate to exit from the initial poten-
tial energy basin and is obtained by averaging Eq. (2) over 50
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FIG. 6. An efficiency comparison of dimer and MD saddle searches for three
different systems: Pt heptamer diffusion; Al adatom diffusion; and vacancy
cluster ripening in bcc Fe. The inset for the Fe system shows the initial dis-
tribution of vacancies.

runs vs. the number of potential energy (force) evaluations.
All rates are calculated using HTST, with a constant vibra-
tional prefactor of 5 × 1012 s−1, at 300 K for the Al and Fe
systems and at 700 K for the Pt system. The total escape rate
K in Eq. (2) was evaluated by first running 20 000 high tem-
perature MD saddle searches to obtain a rate catalog that was
considered complete.

The initial distribution of configurations for the dimer
saddle searches was tuned for each system based upon chem-
ical intuition. In this way, a priori knowledge of likely reac-
tion mechanisms can be used to reduce the computational ef-
fort. In each case, searches were initiated with displacements
from the reactant minimum drawn from a Gaussian distribu-
tion in a subset of the Cartesian degrees of freedom. In the
Al system, the adatom and its first coordination shell (15 de-
grees of freedom) were displaced with a standard deviation of
σ = 0.2 Å. In the Pt system, all seven island atoms (21 degrees
of freedom) were displaced by σ = 0.1 Å. In the Fe system, a
random Fe atom with coordination number less than eight was
displaced, as well as all neighbors within 6 Å, by σ = 0.2 Å.
For the MD saddle searches only the Thigh parameter is re-
quired; temperatures of 1000, 1200, and 2000 K were chosen
for the Al, Fe, and Pt systems, respectively.

Differences in efficiency are shown for the three systems
in Fig. 6. In the Pt system, the dimer searches significantly
outperform the MD searches. This is due to the localized dis-
placement scheme that effectively targets the most important
mechanism of island sliding.

In the Al system, diffusion mechanisms involve both the
adatom and surface atoms. This makes it more difficult to con-
struct an effective distribution for dimer search displacements.
The performance of the two methods here is similar unless
a highly accurate rate catalog is required. In this low-error
regime, high-energy long range events involving many atoms
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must be found and these are hard to find with the dimer initi-
ated with displacements localized around the adatom.

In the initial state of the Fe system, there are 337 atoms
that neighbor the 50 vacancies. These under-coordinated
atoms are targeted by the dimer searches. While each of the
vacancies can diffuse, the escape rate is dominated by a sin-
gle fast process involving two nearby vacancies. This outlier
can be seen in the initial state spectrum of rates at 423 K in
Fig. 3. Since a random selection of the correct under-
coordinated atom to displace has a small probability, the MD
search strategy is more efficient because it automatically finds
the fast event with a high probability.

Each MD saddle search takes on average several times
more force calls to find a saddle. In the Al, Fe, and Pt sys-
tems, the MD saddle searches were six, two, and four times
more expensive, respectively. Despite the increased cost per
search, the MD method can still outperform dimer searches.
There are a few reasons for this. First, dimer searches can
wander to configurations of high energy where they are ter-
minated, or to saddles which do not connect back to the ini-
tial state minimum (by steepest descent). Second, while dimer
searches can be localized to active regions of configuration
space, intuition may not be good enough to target the part of
the system with the highest rates (as in the bcc Fe case). While
MD has a higher overhead, per search, it is more likely to find
relevant saddles of high rate which are connected to the initial
state. Combined with a good error estimation, MD searches
can be preferable, particularly in cases where high accuracy
is desired.

VI. DISCUSSION

In order to evaluate the estimator X(F), the high tempera-
ture rates ki,Thigh must be known. In the Fe vacancy cluster for-
mation simulation, the estimator, when evaluated with these
HTST rates, was found to be accurate enough to be useful as
a stopping criterion. However, it is not always the case that the
HTST rate is a good estimate of the high temperature escape
rate.

For example, the three fastest diffusion events in the Al
adatom on Al(100) system at 300 K are a 2-atom exchange
mechanism, where the adatom pushes a substrate atom up
onto the surface; a hop mechanism, where the adatom moves
directly to a neighboring site; and a 4-atom exchange mech-
anism where the adatom pushes three substrate atoms so that
one surfaces three sites away. The rates of these events as cal-
culated by HTST and MD are shown in Table I. The HTST
rate of the 4-atom exchange mechanism is 22 times greater
than what is observed in a direct MD simulation. The high
HTST rate means that the estimator underestimates the error
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FIG. 7. The average relative error in the rate for Al adatom diffusion on
Al(100) at 300 K with MDSS performed at 800 K, E(C), (solid lines) com-
pared with the average estimated error, X(C), (dashed lines) with a fixed har-
monic prefactor of 5 × 1012 s−1 (top) and the Vineyard prefactor (bottom).

on the characteristic timescale of this event. Figure 7 shows
the average value of the error estimator compared to the true
average error. Two cases are considered: a constant prefac-
tor for all events of 5 × 1012 s−1 and a Vineyard harmonic
prefactor calculated by diagonalizing the dynamical matrix,
which in turn is calculated by finite difference.19 In the case
of the constant prefactor, the predicted high temperature rates
significantly underestimate the true rate, which results in an
overly conservative estimator. With the harmonic prefactor,
the error estimator is accurate until the relative error reaches
the contribution of the 4-atom exchange, at about 1% of the
total rate. At this point, the estimator diverges from the true
error. A promising future direction is to obtain a more accu-
rate true rate from the statistics of the high temperature MD
trajectory.

MDSS-AKMC is similar to Voter’s TAD method, but
there are significant differences. In TAD, high temperature
MD is used to find escape events from a state and the time
at which that event would have occurred at a lower tempera-
ture of interest is extrapolated from HTST. Once confidence
has been reached that the first event at low temperature has
been found, the transition is taken and the processes is re-
peated in the new state. One might then ask why one should
do the additional work in MDSS-AKMC to reach confidence
for the rate catalogue. First, an advantage of doing AKMC
with the rate catalogue is that it is based upon rates calculated
at the low temperature, and does not rely on an extrapola-
tion based upon the HTST approximation at the high tem-
perature, as in TAD. In principle, the AKMC rates can be
made as accurate as desired, for example, using dynamical
corrections to TST. Second, MDSS-AKMC can be augmented
with computational strategies that efficiently recover known

TABLE I. The three fastest events at 300 K for Al adatom diffusion on a Al(100) surface.

HTST rate (s−1)Prefactor Barrier MD rate (s−1)
Event (s−1) (eV) 300 K 800 K 800 K

2-atom exchange 1.4 × 1013 0.206 5.0 × 109 7.3 × 1011 (4.2 ± 0.3) × 1011

Hop 5.8 × 1012 0.377 2.7 × 106 2.4 × 1010 (7.7 ± 0.8) × 1010

4-atom exchange 2.0 × 1014 0.396 4.6 × 107 6.6 × 1011 (2.9 ± 0.5) × 1010
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reaction mechanisms, including saddle recycling9 and the ki-
netic database.20 Third, AKMC allows for efficient coarse-
graining of fast rates through the Monte Carlo with absorb-
ing Markov chains approach.21 The relative strengths of TAD
and MDSS-AKMC, as well as the possibility of a hybrid ap-
proach, will be the subject of future studies.

VII. CONCLUSION

We have described a method to determine the events that
go into an AKMC rate catalog using high temperature MD
saddle searches. In simulations of surface and bulk diffusion,
this MDSS-AKMC method is shown to be efficient for the
calculation of long time scale dynamics in comparison to
AKMC based upon dimer saddle searches.
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APPENDIX: DERIVATION OF EQ. (6)

Here, we give the details of how Eq. (6) is derived from
the definition given in Eq. (5).

Proof.

E(C) =
∑

F∈P(C)

P (F)E(F)

= 1
K

∑

F∈P(C)

∑

ki∈M

ki,Tlow

∏

kj ∈F

p(t ; kj,Thigh )
∏

kj ∈M

1 − p(t ; kj,Thigh ) (A1)

= 1
K

1∑

n1=0

. . .

1∑

nN =0

N∑

i=1

(1 − ni)ki,Tlow

N∏

j=1

p(t ; kj,Thigh )nj (1 − p(t ; kj,Thigh ))1−nj (A2)

= 1
K

⎡

⎣kN,Tlow (1 − p(t ; kN,Thigh ))
1∑

n1=0

. . .

1∑

nN−1=0

N−1∏

j=1

p(t ; ki,Thigh )nj (1 − p(t ; ki,Thigh ))1−nj

+
1∑

n1=0

. . .

1∑

nN−1=0

N−1∑

i=1

kini

N−1∏

j=1

p(t ; ki,Thigh )nj (1 − p(t ; ki,Thigh ))1−nj

⎤

⎦ (A3)

= 1
K

kN,Tlow (1 − p(t ; kN,Thigh )) + E({k1, . . . , kN−1}) (A4)

= 1
K

N∑

i=1

(1 − p(t ; ki,Thigh ))ki,Tlow (A5)

= 1 − 1
K

N∑

i=1

p(t ; ki,Thigh )ki,Tlow .

Equation (A1) follows from the definitions of E(F)
and P (F). In Eq. (A2), the sum over the power set of C
has been re-written as N sums over indicator variables (ni)
in order to enumerate all subsets of C. In Eq. (A3), the
Nth sum has been explicitly evaluated for nN = 0 and nN

= 1. The factor
∑1

n1=0 . . .
∑1

nN−1=0

∏N−1
j=1 p(t ; ki,Thigh )nj (1 −

p(t ; ki,Thigh ))1−nj is unity as it represents the sum of probabil-
ities of all the ways to find any subset of {k1, . . . , kN − 1}.

Equation (A4) is a recursion relation for E(C) used to give
Eq. (A5), which is equivalent to Eq. (6). !
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