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ABSTRACT: A set of benchmark systems is defined to
compare different computational approaches for characterizing
local minima, transition states, and pathways in atomic,
molecular, and condensed matter systems. Comparisons
between several commonly used methods are presented. The
strengths and weaknesses are discussed, as well as
implementation details that are important for achieving good
performance. All of the benchmarks and methods are provided
in an online database to make the implementation details
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available and the results reproducible. While this paper provides a snapshot of the benchmark results, the online framework is
structured to be dynamic and incorporate new methods and codes as they are developed.

1. INTRODUCTION

Computational tools for geometry optimization of potential
energy surfaces (PESs) are ubiquitous in the field of
computational chemistry and molecular and materials science.
The most appropriate and efficient tools are generally
determined by a few limited comparisons between available
methods and codes, rather than a systematic consensus of the
strengths and weaknesses of different methods. There are
several reasons for this. One is that the efliciency of different
methods can vary across systems, making it difficult to draw
general conclusions in terms of their performance. Another
issue is that different research groups have their own codes,
often involving methods that they have developed, and are
naturally biased toward using them. Furthermore, the barriers
associated with distributing and supporting codes for others to
use, as well as understanding and implementing different
methods, makes systematic comparisons difficult. Finally, the
community has not emphasized the importance of standard
benchmarks. Such a benchmark database, containing codes and
results, facilitates comparisons between methods and imple-
mentations, making it easier to draw general conclusions
regarding performance. The benefit is for the community of
developers and for users who want to understand the
similarities and differences of available methods.

The performance of geometry optimization algorithms can
be sensitive to the form of the underlying objective function. In
this regard, our focus in the present contribution is specifically
on systems in chemical physics and materials science, where we
want to find structures that are stationary points on the PES.
Local minima are usually the first structures to be considered
because they provide information about the thermodynamically
stable states of the system. We are also interested in the kinetics
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that determine the pathways between the stable states. Within
the context of transition state theory (TST), the first-order
saddle points that connect states via intrinsic reaction
coordinates are also important.' Accordingly, we also
investigate methods for finding these transition states and the
approximate steepest-descent paths that connect them, from
which energy barriers and reaction rates can be determined.
This manuscript is structured as follows: First, we define our
choice of benchmark systems and codes to test. Second, we
perform a comparison of minimization methods to find local
minima. Third, we compare global optimization methods,
involving a long sequence of displacements from local minima
and minimizations, designed to find global low-energy
structures. Fourth, we investigate single-ended saddle point
search methods to find a nearby saddle from a given initial
position. Fifth, we compare double-ended saddle point search
methods that attempt to locate a saddle between a specified
initial and final position. Finally, we look at methods to find all
the low energy saddles that lead from an initial minimum in
order to calculate the rate of escape from harmonic TST. The
paper concludes with a discussion of the results and
information about the online benchmark database.

2. BENCHMARK SYSTEMS

Five different atomic clusters and condensed phase systems are
compared in these benchmarks: (a) a cluster of 38 particles
interacting through a pairwise Lennard—Jones potential (L]ss),
(b) a two-component L] cluster with 100 particles (BLJ,q0), (c)
clusters of 10, 15, and 20 water molecules interacting through
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the pairwise TIP4P potential (TIP4Py), (d) a seven-atom
heptamer island supported on the (111) surface of a face-
centered cubic (FCC) material interacting via a pairwise Morse
potential, and (e) a bulk FCC system for the same Morse
potential. Figure 1 illustrates these five systems.
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Figure 1. Five benchmark systems: (a) Lennard—Jones 38-particle
cluster, L]s5, (b) two-component L]y, cluster, (c) 20-molecule water
cluster, (d) heptamer island on a (111) surface, and (e) bulk Pt as
described by a Morse potential.

The LJ potential employs the standard 6—12 form,”
appropriate for describing the interaction between noble gas

atoms
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where ;= ||, — r;||, and r, is the position vector for atom i. In
the TIP4P model,” water molecules are represented as rigid
monomers with an OH distance of 0.9572 A and a HOH angle
of 104.52°. The LJ site is centered on the oxygen atom, with
partial positive charges (+0.52 ¢) on the hydrogen atoms and a
partial negative charge (—1.04 ¢) displaced 0.1S A along the
bisector of the HOH angle, toward the hydrogen atoms. The

potential energy of a cluster of TIP4P molecules is given by
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where roo is the distance between the oxygen atoms on
molecules 7 and m, g; and g; are the partial charges, k¢ = 332.1
A keal mol™, A = 6 X 10° keal A'? mol™}, and B = 6.1 X 10°
kcal A® mol™. The Morse potential also takes a pairwise
additive form*

Vitoree = [Z Ce—Za(r,,—ro) _ Zce—a(rf,—ro)]
i<j (3)
where C = 0.7102 eV, a = 1.6047 A™", and r, = 2.8970 A; they
were chosen to describe Pt.°
There are a couple of differences between these systems that
can affect the performance of the methods. The LJ;5 and LJ ;o
systems are clusters in the gas phase, where rotations and
translations need to be explicitly accounted for. The LJ

potential is also quite stiff in terms of producing relatively large
forces and curvatures when atoms approach each other. The
Morse potential in the present parametrization is softer and
more forgiving of second order optimizers, which build up a
local approximation to the curvature. The surface system has
frozen atoms in the bottom-most layers of the slab, which
automatically prevent translation and rotation. These differ-
ences affect the performance of the different optimizers,
especially those used in searches for transition states.

3. METHOD IMPLEMENTATIONS

Four in-house codes, peLg,’ opriv,” oM, and Eon™'® were
compared, as well as asg,"' and sciey.'® These programs
implement a variety of optimizers, including limited-memory
Broyden—Fletcher—Goldfarb—Shanno (LBFGS),"® conjugate
gradient (CG),"*"® fast inertial relaxation engine (FIRE),'
damped dynamics “quick-min” (QM) method,"” and steepest-
descent (SD). Double-ended transition state algorithms include
the climbing-image nudged elastic band (CI-NEB)'®' and
doubly nudged elastic band (D-NEB)?*° methods. Single-ended
min-mode following methods include the hybrid eigenvector-
following (EF),*"** dimer,”>~** and Lanczos algorithms, as in
the activation—relaxation technique (ARTn).”® Global opti-
mization was performed using the basin-hopping (BH)
algorithm®” and the temperature basin-paving (TBP) algo-
rithm.**%°

The details of these methods will not be discussed here; they
are documented in the references provided. Instead, we will
mention any important implementation details, as well as
qualitative differences between the methods that explain their
relative performance.

4. RESULTS

4.1. Local Optimization. In the first local optimization
benchmark, a set of 1000 structures for the LJsg cluster are
minimized until the magnitude (L* norm) of the force is less
than 107> reduced units. The initial structures were generated
using a cluster-growing algorithm.*

The local optimization benchmark requires that the program
being tested load each of these structures and minimize the
energy for the LJ potential until the magnitude of the force is
less than 107> reduced units. The average number of gradient
evaluations of the potential (force calls) is reported, as well as
the minimum and maximum number of force calls to find any
single minimum. Note that we are comparing force-based
optimizers, so it is assumed that the force is evaluated at every
iteration; the energy is typically evaluated as well, so each force
call also counts these calculations. Table 1 summarizes a

Table 1. Minimization of LJ;; Configurations”

force calls

code method avg min max

OPTIM LBFGS 176 90 421
PELE LBFGS 179 90 540
Eon LBEGS 181 920 405
ASE LBFGS 355 166 9317
Eon CG 453 207 1154
Eon FIRE 645 207 2963
Eon QM 3523 667 9929
Eon SD 4901 1355 9982

“Until ||Force|| < 1072
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selected set of benchmark results; when codes have similar
performance, only one characteristic value is reported. Figure 2
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Figure 2. Performance of the different optimizers for LJ;; as
implemented in the Eon code.

shows how the different algorithms compare in a typical run. A
full set of results for these tests and all the other benchmarks
reported here can be found online>" A comparison of the
performance for a typical starting configuration is shown in
Figure 2.

In this local optimization benchmark, LBFGS is the clear
winner, with CG in second place, followed by the other
methods. This result is not surprising;>> both LBFGS and CG
employ numerical curvature information to accelerate opti-
mization within a harmonic approximation of the potential. CG
can be thought of as having memory of a single curvature,
whereas LBFGS builds up an approximate inverse Hessian with
a longer memory. In our implementation, the performance of
LBFGS gradually improves with the length of the memory, and
a default value of 20 previous steps works well, although
additional speed gains can be made with larger values. Perhaps
even more important, however, is that LBEGS provides a step
length, whereas CG gives only a direction. Some implementa-
tions of CG use a bracketing approach to find a minimum along
this direction; the implementation in Eon evaluates the
curvature along the direction with a second force evaluation
and does a Newton’s step to approximate the location of the
zero in the force along the line. This formulation requires a
second force call at each step compared to LBFGS, which is
evident from the results in Table 2, with CG taking
approximately twice as long to converge as LBFGS.

Table 2. Minimization of Bulk FCC Solid until
||Force||<1073 eV/A

force calls
code method avg min max
OPTIM LBEGS 46 21 80
PELE LBFGS S1 24 84
Eon LBEGS 52 35 81
ASE LBEGS 54 35 91
Eon CG 106 67 183
Eon FIRE 156 107 212
Eon SD 196 95 360
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The first-order methods, FIRE, QM, and SD, are all slower.
The potential advantage of these methods is stability,**
although stability of the optimizers was not an issue for this
benchmark.

The same relative performance for the different optimizers is
reflected in a second benchmark, namely, the minimization of
1000 structures randomly displaced from a bulk crystalline
FCC structure, modeled with a Morse interatomic potential.
Again, LBFGS is the fastest, followed by CG, and then the
methods that do not use approximate curvature information.
The LBFGS implementation in st is a little slower because it
uses a fixed initial Hessian (here 25 eV/A?) as opposed to the
LBFGS implementations in EoN, opTiv, and PELE, where the
initial Hessian is updated at each step based upon the curvature
between the current and previous configurations.

A few comments should be made about our implementations
of these optimizers. First, all methods employed a “max move”
parameter; if the optimizers ever try to make a step larger than
this maximum, the size is reduced in magnitude to the limit.
Our limit is generally set between 0.1—0.2 A or a fraction of a
1J distance unit. Another important issue is that the LBFGS
and CG methods can reach ill-conditioned states. When the
optimizers operate outside the harmonic region around a
minimum, negative Hessian eigenvalues can be introduced into
the memory in LBFGS. Following the LBFGS algorithm blindly
would take the system to a maximum along such directions.
There are different ways to deal with this situation. In EoN, a
“max move” step is taken parallel to the gradient, and the
memory is reset. In PELE, OPTIM, and GMIN, the step is inverted
so that the algorithm is forced to move down the potential, and
the memory is retained. The LBFGS implementations listed
simply accept the LBFGS step or do a minimalistic back-
tracking line search, but none of them, by default, use a full line
search. CG algorithms can also become frustrated if the search
direction becomes linearly dependent upon search direction at
the previous step. It is essential to check for this condition,
which is done implicitly in the Polak—Ribiere u4pdate formula®
and explicitly as in the Powell reset criterion.’

4.2. Global Optimization. Three benchmarks are defined
for global optimization. The first is for the same LJ3; cluster
considered above for the local optimization test. The second is
a two-component BLJ o, cluster. The third is a series of TIP4P
water clusters, composed of 10, 15, and 20 molecules. The BL]J
cluster is composed of 42 A particles and 48 B particles with L]
parameters €44 = €45 = €g5 = 1, 644 = 1, 03 = 1.3, and 0,3 =
(044 + 045)/2. The first example is a relatively simple test in
which the benchmark requires all entries to report the number
of force calls, on average, required to find the global minimum
from 100 initial structures. The initial structures were generated
as in the local optimization benchmark, except that they were
initially minimized. The second benchmark is significantly
harder because of the two components and the frustration in
the energy landscape caused by the different sizes of the
particles. Because the algorithms are not expected to locate the
global minimum within the number of allowed steps, the
benchmark reports the average lowest energy, along with the
minimum and maximum values, found from 100 initial
structures after 2,000,000 force calls.

Both Eon and PELE use standard Cartesian trial moves and
LBFGS to minimize trial structures; their performance is
comparable. The GMIN code is better ogptimized for this system,
using angular moves for surface atoms,*® as well as symmetrized
moves (BH-sym and BH-csm) (Table 3).>” However, the best
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Table 3. Global Optimization of LJ;; Clusters

force calls (thousands)

code method avg min max

GMIN BH-csm 6.4 0.07 27
GMIN BH-sym 23 0.7 121
GMIN BH 266 6.5 1170
Eon BH 508 4.6 1796
PELE BH 522 9.4 2534

results obtained so far (Table 4) correspond to a deterministic
search scheme to locate the optimal chemical ordering.>® This
procedure is based on Kernighan and Lin’s (KL)* heuristic for
partitioning graphs.

Table 4. Global Optimization of a Two-Component BL]J,,,
Cluster”

lowest energy

code method avg min max
GMIN BH/KL —589.5 —599.0 —578.6
Eon BH —584.6 —596.1 —574.1

“This reports the average minimum energy reached after 2,000,000
force calls. Previous studies®® have reported a putative global minimum
energy of —604.80 reduced energy units.

Similarly, the third benchmark is more difficult than the first
owing to the coupling between orientational and translational
degrees of freedom in molecular clusters. Both the BH and
TBP algorithms were benchmarked for 10000, 500, and 100
initial structures for 10, 15, and 20 molecules, respectively. We
use the linear version presented in the original TBP paper (L—
TBP), with the parametrization therein.”® Uniformly random
rotational displacements were employed with both algorithms.
Although the L—TBP algorithm performs slightly better in all
three cases, the results are equivalent for practical purposes

(Table 5).

Table S. Global Optimization of TIP4Py(N = 10, 15, 20)
Clusters”

force calls (thousands)

code method N avg min max

GMIN BH 10 16.236 0.121 148.360
GMIN L-TBP 10 16.099 0.121 145.120
GMIN BH 15 670.65 4.55 5026.50
GMIN L—-TBP 15 625.36 2.35 6176.90
GMIN BH 20 28597 441 141910
GMIN L-TBP 20 25567 597 143400

“Statistics are reported for runs starting from 10000, 500, and 100
initial structures for 10, 15, and 20 molecules, respectively.

4.3. Single-Ended Saddle Point Searches. Single-ended
saddle point finding methods start from a single configuration
on the PES and aim to converge to a nearby saddle point.
Almost all such methods rely on the determination of an uphill
direction along which the potential is a local maximum, while
minimizing in the space perpendicular to that direction. A
common choice is to use the local lowest curvature mode as the
maximization direction; this class of methods, which is referred
to as “min-mode following” methods, evolved from the earlier
eigenvector-following and surface walking methods.**~** Over-
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all translation and rotation can be projected out in this
procedure.*

The performance of the min-mode following algorithms can
be understood by decomposing them into their two
components: (a) identifying the lowest (nonzero) curvature
mode and (b) optimizing to the saddle point. We compare
three strategies for estimating the lowest curvature mode:
minimization of a Rayleigh—Ritz ratio*® (hybrid EF meth-
ods),? rotation of a dimer (dimer method),”>"** and Lanczos
(as used in the ARTn method).?® In fact, the Rayleigh—Ritz
approach used in hybrid EF methods is based upon the same
finite-difference gradient of the Rayleigh quotient that is used in
the dimer method, as we have recently reviewed.*” Rayleigh—
Ritz minimization and dimer rotations both correspond to
minimization of the same force equations, although the
implementation details can be different.

Table 6 compares these strategies by choosing points near
saddles in the LJ;5 cluster and seeing how many force calls are

Table 6. Determination of Lowest Curvature Modes for
Points near Saddles in LJ;,”

force calls

code method avg min max

OPTIM RR 25 13 58
PELE RR 25 12 61
TSASE Lanczos 25 13 54
TSASE dimer (BFGS) 27 13 65
Eon dimer (BEGS) 28 14 70
Eon Lanczos 28 13 73
TSASE dimer (CG) 29 13 86
Eon dimer (CG) 30 14 93

“The eigenvector corresponding to the smallest non-zero Hessian
eigenvalue is considered converged when the dot product with the
exact vector is greater than 0.99.

required to determine the lowest eigenvector direction. These
methods all use only first derivatives. The lowest (nonzero)
curvature mode could be found by diagonalizing the Hessian
matrix, but this approach is often significantly slower, especially
for larger systems. No initial information about the mode with
the smallest nonzero Hessian eigenvalue is provided; the
eigenvector corresponding to the unique negative eigenvalue is
randomly initialized. oprriv, PELE, and EoN use LBFGS as the
optimizer in the EF and dimer methods.

The second aspect of the single-ended transition state
methods is convergence to a saddle, which is achieved by
maximizing the potential along the chosen uphill direction and
minimization in all other directions. Again, there are different
strategies. At each iteration in hybrid EF, the system is moved
uphill along the negative mode according to a Newton’s
method type step.***® The system is then minimized in the
space perpendicular to that mode, and the eigenvector
corresponding to the uphill direction is reconverged. In the
dimer method, the force is inverted along the lowest mode and
followed uphill with a standard (force-based) optimizer. Table
7 shows the relative performance of the methods for finding a
saddle starting from a point between pairs of adjacent minima
in LJsg.

A drawback of the Lanczos algorithm is that several force
calls are required to determine that the lowest eigenvector is
sufficiently converged. This is because convergence of the
eigenvector is measured by a change in the estimated lowest
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Table 7. Transition States from Starting Points near Saddles
in LJ5"

force calls
code method avg min max failed
OPTIM EF 145 57 565 0
PELE EF 192 59 1488 0
Eon Lanczos 237 65 1898 0
Eon dimer 528 92 3581 0

“Convergence is defined by ||Force|| < 107>

eigenvalue. In contrast, the hybrid EF and dimer methods use
the root-mean-square gradient for the Rayleigh—Ritz ratio or
the rotational force on the eigenvector to determine
convergence and, in fact, to determine if any steps or rotations
are required. Particularly near the saddle, when the lowest
mode is found to sufficient accuracy, the hybrid EF and dimer
methods can outperform Lanczos by avoiding any refinement
of the uphill direction.

This effect is illustrated in a slightly different benchmark,
using the Pt-heptamer island system, where we start with an
initial point near a saddle, but this time the reactant minimum
structure is also supplied. Information about a minimum is
typically known, for example, when single-ended search
methods are used to find saddles connected to an initial
minimum. The vector between the reactant and the initial
search point can be a reasonable guess for the uphill direction if
it does not contain any components of Hessian eigenvectors
corresponding to overall translation or rotation. Using this
information, the performance of the different methods is
similar, as shown in Table 8.

Table 8. Saddle for Pt-Heptamer Island®

force calls
code method avg min max failed
OPTIM EF 71 43 143 0
PELE EF 88 52 198 0
Eon Lanczos 106 71 163 0
Eon dimer 116 83 160 0

“Convergence is defined by ||Force|| < 107™* eV/A.

When fewer force calls are required to find the uphill
direction, the advantage of the dimer and hybrid EF methods is
apparent.

4.4, Double-Ended Saddle Searching. A second class of
saddle point methods involves double-ended searches, in the
sense that they find a saddle (or a set of saddles and
intermediate minima) between specified reactant and product
end points. To benchmark these methods, we choose pairs of
minima known to be separated by a single transition state and
see how quickly the corresponding saddle can be found. Table
9 shows the results for the LJ;; cluster using selected pairs of
adjacent minima. An issue for this system, and all gas-phase
molecules, is that overall translation and rotation should be
removed. This condition can be achieved (to some extent) by
explicitly projecting out these modes in the NEB methods, but
the chain-of-states approaches can still suffer from elongation of
the path due to displacements between the images along the
low or zero-frequency normal modes. In extreme cases, this
elongation can lead to slow convergence, low resolution of
images around the saddle, and a failure to converge. In this L34
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Table 9. Transition State between Adjacent Minima in L]
Cluster with a Convergence Condition of ||Force|| < 1073

force calls

code method avg min max failed

OPTIM DNEB+EF 131 66 260 0
EON Lanczos 287 85 1623 0
PELE DNEB+EF 293 107 782 0
Eon dimer 337 89 2079 0
Eon CI-NEB(5) 827 407 2347 7
Eon CL-DNEB(5) 861 407 2187 s

“Cluster with a Convergence Condition of ||Force|| < 107,

benchmark, we have chosen a maximum number of force calls
(500 iterations) where NEB calculations that start to develop
problems, for example, due to long paths through intermediate
minima, are considered failures.

An example of a “failed” NEB calculation is shown in Figure
3. While we know that the minima in question are indeed

20
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0
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o 1 2 3 4 5
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Figure 3. Potential energy profile for a NEB calculation that failed to
converge in the LJ;3 system due to the presence of an intermediate
minimum and path elongation.

connected by a single transition state (found using approximate
steepest-descent following small displacements along the
eigenvector corresponding to the unique negative Hessian
eigenvalue at the transition state), convergence of the NEB
from an initial linear interpolation leads to intermediate minima
and an elongated path. Using a single-ended search method to
find the first transition state, adding more images, or breaking
up the band into separate NEB calculations between all local
minima are sensible ways of recovering from this problem.
The single-ended searches are not as sensitive to complex
pathways because they search only for a nearby saddle instead
of a path. It is still possible to use them with information from
two end points. In fact, the dimer and Lanczos methods work
very efliciently when initialized half way between two adjacent
minima, using the vector between as an initial guess for the
negative mode. In PELE and opTiv the double- and single-ended
approaches are combined. First, a DNEB calculation is
performed to find an image in the vicinity of the saddle. The
double-nudging helps to keep the band short and smooth, as
well as helping to prevent elongation of the path. Instead of a
fixed number of images, a constant image density was used.
When the force on the highest energy image drops below a
loose force threshold (here |[|[Force|| < 0.1), the algorithm
switches to hybrid EF, and the transition state is tightly refined.
Switching to hybrid EF avoids having to converge the DNEB
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images and also improves the stability of the single-ended
methods, which is particularly important for gas-phase clusters.

For the Pt-heptamer island diffusion test, frozen atoms at the
bottom of the slab hold the surface in place and automatically
eliminate rotation and translational degrees of freedom.
Removing these modes that correspond to zero frequencies
improves the relative performance of the NEB method and
reduces the need for double-nudging. Another factor in favor of
the NEB is that the paths chosen to investigate, 60 low energy
diffusion mechanisms from the compact Pt-heptamer, are better
approximated by linear interpolation compared to the LJsq
cluster.

Table 10 shows the number of force calls required to find the
transition state along the path, which works efficiently for only

Table 10. Saddle between Adjacent Minima for Pt-
AHeptamer Island®

force calls

code method avg min max failed

OPTIM DNEB+EF 103 59 194 0
Eon CL-NEB(1) 110 29 594 0
Eon Lanczos 165 72 308 0
Eon dimer 182 74 322 0
Eon CL-NEB(3) 248 86 761 3
PELE DNEB+EF 255 96 782 2
Eon CI-NEB(5) 391 162 797 0

“Tolerance of ||Force|| < 107 eV/A.

a single image CI-NEB calculation, labeled as CI-NEB(1). The
dimer and Lanczos algorithms also converge but with some
extra work because the eigenvector corresponding to the
negative eigenvalue is optimized instead of being held fixed, as
in the single image CI-NEB calculation. Realistically, one would
not generally use a single image for an NEB calculation, so we
include the three-image NEB, CI-NEB(3), as a more realistic
indication of the cost of the method.

5. DISCUSSION AND CONCLUSIONS

The aim of this work is to establish a set of benchmarks for
geometry optimization, transition state searches, and character-
ization of pathways in atomic, molecular, and condensed matter
systems. The benchmarks can be accessed at http://optbench.
org/. All entries are provided with the corresponding source
code and scripts to run the benchmark. Hence, the results
should be reproducible, and meaningful comparisons are
possible. The results presented here compare a limited number
of methods and codes and include representative examples
from the online database. A longer-term aim is to have a
dynamic site, which is updated as new methods and codes are
developed. Contributions are welcome, either by email or via
the subversion (SVN) repository.
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