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The A15 to bcc phase transition is simulated at the atomic scale based on an interatomic potential for
molybdenum. The migration of the phase boundary proceeds via long-range collective displacements of
entire groups of atoms across the interface. To capture the kinetics of these complex atomic rearrangements
over extended time scales we use the adaptive kinetic Monte Carlo approach. An effective barrier of 0.5 eV
is determined for the formation of each new bcc layer. This barrier is not associated with any particular
atomistic process that governs the dynamics of the phase boundary migration. Instead, the effective layer
transformation barrier represents a collective property of the complex potential energy surface.
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Many properties of bulk materials are determined by
internal interfaces. As only small amounts of interface
active elements are required to modify the stability and
mobility of interfaces, interface properties are a focus in
alloy design. In Ni-based superalloys [1], for example,
refractory elements such as Re, Mo, or W are added to
suppress creep. These elements can induce the formation of
topologically close-packed (TCP) phases [2] that are not
coherent with the cubic and single-crystalline superalloy
material. The TCP phases are detrimental to the mechanical
properties of the alloys and thus their formation needs to be
avoided or retarded. In addition to a detailed knowledge of
the structure and stability of the interfaces between TCP
phases and the host material it is key to obtain insight into
the kinetics of the migration of the phase boundaries.
Simulating the kinetics of complex phase boundaries in

solid-solid phase transformations up to experimental time
scales remains one of the great challenges in the atomistic
modeling of materials. Molecular dynamics (MD) simu-
lations are limited to time scales that are orders of
magnitude shorter than experimental ones. To observe
phase boundary migration on such short time scales
unrealistically high driving forces are required that can
alter the underlying atomistic mechanisms. Another chal-
lenge is presented by the collective atomic displacements at
the interface that are too complex to use a lattice based
kinetic Monte Carlo [3,4] approach to follow the dynamics
over extended time scales. To capture the kinetics of
complex phase boundaries we have to go beyond standard

atomistic simulation techniques. One possibility is to use
accelerated MD [5] if a suitable bias potential can be
defined (hyperdynamics), very large computational resour-
ces are available (parallel replica dynamics), or the impor-
tant reaction rates can be assumed to follow an Arrhenius
form to a high temperature where they can be observed
directly with MD (temperature accelerated dynamics).
In this study we present the application of adaptive

kinetic Monte Carlo (AKMC) [6] to interface migration
between different phases. The AKMC approach allows for
simulations of atomic systems over long time scales by
focusing on the dynamics of rare events. The method
remains flexible by identifying the atomistic processes on
the fly during the simulation. This is crucial as the phase
boundary migration involves long-range collective motions
of atoms across the interface. While the AKMC approach is
also used in conjunction with ab initio methods, for the
simulation of interface migration these methods are still
computationally too expensive and we therefore use an
interatomic potential for the evaluation of energies and
forces. Along the trajectory the system evolves through a
complex energy landscape. The analysis of the topology of
the energy landscape indicates the fundamental mecha-
nisms that determine the kinetics of the moving phase
boundary.
The system that we have studied is the phase boundary

between the body-centered cubic (bcc) and A15 phase in
molybdenum. The A15 phase is one of the TCP phases and
has been observed as a metastable phase in elemental
tungsten [7–9] as well as in transition metal alloys [10–13],
in particular also in the context of superconductivity
[14,15]. The unary bcc=A15 interface provides a suitable
initial model system for a complex phase boundary. The
A15 phase has a cubic unit cell with eight atoms and
two inequivalent lattice sites that are 12- and 14-fold
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coordinated, respectively. Energies and forces are calcu-
lated using an embedded atom method (EAM) potential for
molybdenum [16]. To check the validity of the EAM
potential we performed density-functional theory calcula-
tions for the basic bulk properties of the bcc and A15
phase. The EAM results are in good agreement with the
density-functional theory data (details are given in the
Supplemental Material [17]). The supercell setup used in
the AKMC simulations is shown in Fig. 1. For both phases
the [001] direction is perpendicular to the interface and
periodic boundary conditions are applied in all three
dimensions. One interface is fixed during the simulation
while the other can move freely. Our choice of cell, which is
optimized for the bcc lattice constant, has a compression of
the A15 phase by 7% resulting in a driving force for the
transformation from the A15 to the bcc phase of
0.36 eV=atom. Despite the large energy gain we assume
that the system fully thermalizes after each layer transition.
The initial interface was optimized by removal of high

energy atoms and subsequent relaxation of the atomic
positions and the cell dimension in the z direction.
The AKMC simulations were performed using the EON

code [26]. In each kinetic Monte Carlo step the potential
energy surface (PES) around the current minimum is
explored to find all important escape processes and
corresponding barriers. The barriers are used to determine
the rate for each process within harmonic transition state
theory. The corresponding prefactor can be calculated from
the vibrational frequencies at the minimum and the saddle
point. In the AKMC simulations we used a fixed prefactor
of ν0 ¼ 5 × 1012 s−1 for all processes. We verified that the
results are not affected by this approximation by comparing
with simulations where the prefactor was calculated
explicitly for each process. The identification of saddle
points and respective atomistic processes on the high-
dimensional PES of this complex system is challenging
and requires a robust approach that can find important
saddle points with a high confidence. Here, we use high-
temperature MD trajectories together with nudged elastic
band [27,28] calculations (details are given in the
Supplemental Material [17]). This allows us to assign a
confidence to the completeness of our rate catalog at each
step in the simulation [29].
In Fig. 2 the change in potential energy is plotted as a

function of simulation time for a typical AKMC trajectory
at T ¼ 300 K. As the simulation progresses the bcc phase
grows and the energy drops. The steps in the energy profile
result from layer-by-layer growth, where the energy
decreases by 0.36 eV=atom for each bcc layer formed
(13 eV for our 36 atom=layer simulation). The time scale
of the simulation reaches up to microseconds for the entire
A15 → bcc transformation to complete. Overall we have
performed 20 simulations for each temperature with per
layer transformation times ranging between 7 ps and 22 ns
at T ¼ 600 K and 0.1 ns and 0.1 ms at T ¼ 300 K.
Especially at low temperatures the time scales of the layer
transition far exceed the range of classical MD. In between
each layer transformation there is an energetic plateau
consisting of a large number of states with similar energy
connected by relatively small barriers. These states are
similar in structure with an almost constant number of
atoms in the bcc and A15 phase. They differ, however, in
the detailed atomic structure of the interface. During the
simulation the interface does not remain sharp; rather, a
disordered layer is formed between the two phases. The bcc
phase grows out of the disordered interface layer, which
appears to be energetically more favorable than maintain-
ing a sharp interface between the two phases. We observed
the formation of the disordered interface in all our simu-
lations, in the AKMC simulations as well as in the high-
temperature MD simulations. This could be due to the
relatively large mismatch and corresponding driving force
and the disordered interface structure might be less pro-
nounced or even absent for other cell geometries. Partially,
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FIG. 1. Illustration of the phase boundary simulation geometry.
(a) A 6 × 6 bcc phase and a 4 × 4 A15 phase were paired in the
x-y direction with fixed cell lengths of 18.9 Å in the x and y
direction, and 37.8 Å along the z direction. The black atoms
represent fixed atoms, the blue atoms are the bcc phase, the red
atoms are the A15 phase, and the gray atoms are in the interface.
(b) Energy versus lattice constant Lx ¼ Ly, with fixed Lz. The
relaxed bcc phase is 0.06 eV=atom more stable than the A15
phase; our chosen supercell, near the equilibrium bcc lattice
constant, has a driving force of 0.36 eV=atom favoring the bcc
phase.
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the disordered interface may also be an artifact of our
simulations due to the short-ranged EAM potential.
Changes in the atomic positions in this disordered interface
layer do not have a significant influence on the total energy
of the system, but they nevertheless constitute new system
states and show how the system must explore the energy
landscape to find a mechanism for the growth of the bcc
phase. These states can be combined into so-called super-
basins where transitions between superbasin states are fast.
Computationally, these fast transitions significantly slow
down the simulation. We therefore apply the Monte Carlo
with absorbing Markov chains approach [30,31] to ana-
lytically determine an exact escape time from each super-
basin. The superbasin states are essential for the overall
dynamics and the underlying atomistic mechanisms of the
transformation are nontrivial.
To analyze the AKMC trajectories in more detail we

visualize the complex energy landscape that is explored
during the transformation in a disconnectivity graph [32].
An example for a trajectory at T ¼ 300 K is shown in

Fig. 3. The disconnectivity graph in Fig. 3 does not
represent the entire PES, but only a region that is visited
over the course of a single layer transition. In the dis-
connectivity graph the minimum belonging to a particular
basin on the PES can be identified together with the
corresponding transition state energy at which the mini-
mum can interconvert. It displays the topology of the
energy landscape where the superbasins are clearly visible
as groups of states. The processes connecting the different
minima are not simple movements of a few atoms but
complex rearrangements of entire groups of atoms at the
interface, cf. Fig. 3. For each bcc layer to form the system
needs to climb out of a superbasin to continue further down
in the disconnectivity graph.
All layer transitions were not as simple as shown in

Fig. 3. An example of a more complex transition corre-
sponds to the energy plateau containing point b in Fig. 2.
This transition is significantly slower than the other
transitions for this AKMC run. Also notable is the larger
potential energy gain at the end of the plateau of 26 eV
compared to the 13 eV potential energy gain for the
formation of a single bcc layer. The disconnectivity graph
of this slow transition, in Fig. 4, illustrates that this
transition is significantly more complex than the typical
single-layer transition, in Fig. 3. Here, multiple barriers
around ∼0.5 eV are crossed; these barriers are associated
with forming bcc layers in a larger disordered interface.
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FIG. 2. (a) Potential energy gained during an AKMC simu-
lation at T ¼ 300 K and snapshots indicating the transformation
mechanism from the A15 (red spheres) to the bcc phase
(blue spheres). Gray spheres indicate atoms at the interface.
(b) Enlarged portion of the energy plateau circled in (a) indicating
a superbasin width of approximately 0.5 eV. C1
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FIG. 3. Disconnectivity graph of a characteristic phase tran-
sition indicating that a ΔE ≈ 0.5 eV barrier needs to be crossed.
(This disconnectivity graph is the energy plateau containing point
c in Fig. 2.)
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Once the system is able to escape the large disordered
region, two layer transitions occur in rapid succession.
We further quantify the phase transformation by the

average time needed to form a new layer of the bcc phase.
Using the common neighbor analysis [33] we locally define
for each atom whether it is in a bcc or A15 environment.
With this we can monitor the position of the interface. The
bcc layer closest to the interface is identified and the time
τlayer is recorded until the next full bcc layer has formed.
The mean first-passage time τ̄layer is calculated as the
average over 90 values and the rate for layer transformation
is klayer ¼ 1=τ̄layer. The layer transformation rate is propor-
tional to the interface velocity v, which is related to the
mobility M and the driving force P via v ¼ MP. At
T ¼ 1000 K the velocity is 8.6 m=s, a typical value in
MD simulations. At T ¼ 600 K the velocity is 0.14 m=s,
which marks the lower limit of velocities that can be
observed within MD simulations. At T ¼ 300 K the inter-
face velocity is only 11 μm=s showing that with our
AKMC simulations we can cover interface velocities that
are in the range of experimentally observed ones. The
interface mobility often shows an Arrhenius relationship
and as shown in Fig. 5 we find such a behavior for the layer
transformation rate klayer ∼M

klayer ¼ ν exp
!
−
ΔElayer

kBT

"
: ð1Þ

The fit to the AKMC data (black dots in Fig. 5) results in
an effective barrier for the layer transformation of

ΔElayer ¼ 0.47$ 0.07 eV (with a coefficient of determi-
nationR2 ¼ 0.98). If we compare the effective barrier to the
energy barriers of the individual atomistic processes, we do
not find any particular type of process that is associated
with a barrier of ΔE ≈ 0.5 eV. The transformation time is
not dominated by any rate determining step, but the
effective energy barrier extracted from the Arrhenius
relationship is a characteristic of the energy landscape. It
is correlated with the energetic depth of the superbasins,
given by the energy difference between the lowest mini-
mum and the transition state that must be overcome to leave
the superbasin, cf. Fig. 3.
At high temperatures of T ¼ 600–1000 K, the trans-

formation times are short enough to compare with MD
simulations [34] (shown in Fig. 5, red and blue dots). The
fit to the MD data yields an effective barrier of ΔElayer ¼
0.52$ 0.03 eV (R2 ¼ 0.97), which is in good agreement
with the AKMC data. In Fig. 5 we also show the fit (solid
line) to all data points (AKMC and MD), which results in a
value of ΔElayer ¼ 0.50$ 0.02 eV (R2 ¼ 0.99). The good
agreement between the low temperature AKMC and the
high temperature MD activation barriers suggests that
effectively the same parts of the energy landscape are
explored so that the overall mechanism of the transforma-
tion is independent of temperature. For simulation cells
with larger interface regions the effective barrier might
change as we would expect a step nucleation and growth
mechanism of bcc layers that is only beginning to show in
the smaller cells used in this study.
In this Letter we have shown that we can determine the

mechanism of complex phase boundary migration up to
experimental time scales using the AKMC approach. The
evolution of the phase boundary involves long-range
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FIG. 4. Disconnectivity graph of the slow process shown in
Fig. 2. The mechanism has a larger disordered region than the
characteristic mechanism in Fig. 3 and a higher barrier is
overcome for the phase transition to progress.
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FIG. 5. Arrhenius plot of the formation of a bcc layer. An
activation barrier of ΔElayer ¼ 0.50$ 0.02 eV was found by
fitting the MD (red and blue dots) and AKMC (black dots) data
over the entire temperature range. The MD data were obtained
with two different thermostats, an Andersen (red dots) and a
Langevin (blue dots) thermostat.

PRL 116, 035701 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

22 JANUARY 2016

035701-4



collective motions of groups of atoms and proceeds via a
disordered interface layer. The effective activation barrier
for the layer transformation and correspondingly for the
mobility of the phase boundary is a characteristic of the
complex energy landscape explored during the transforma-
tion. The progress of the phase boundary is therefore
determined by collective features of the potential energy
surface instead of a few simple atomistic mechanisms.
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