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ABSTRACT: Although the equilibrium composition of many alloy
surfaces is well understood, the rate of transient surface segregation
during annealing is not known, despite its crucial effect on alloy
corrosion and catalytic reactions occurring on overlapping timescales. In
this work, CuNi bimetallic alloys representing (100) surface facets are
annealed in vacuum using atomistic simulations to observe the effect of
vacancy diffusion on surface separation. We employ multi-timescale
methods to sample the early transient, intermediate, and equilibrium
states of slab surfaces during the separation process, including standard
MD as well as three methods to perform atomistic, long-time dynamics:
parallel trajectory splicing (ParSplice), adaptive kinetic Monte Carlo
(AKMC), and kinetic Monte Carlo (KMC). From nanosecond (ns) to
second timescales, our multiscale computational methodology can
observe rare stochastic events not typically seen with standard MD, closing the gap between computational and experimental
timescales for surface segregation. Rapid diffusion of a vacancy to the slab is resolved by all four methods in tens of nanoseconds.
Stochastic re-entry of vacancies into the subsurface, however, is only seen on the microsecond timescale in the two KMC methods.
Kinetic vacancy trapping on the surface and its effect on the segregation rate are discussed. The equilibrium composition profile of
CuNi after segregation during annealing is estimated to occur on a timescale of seconds as determined by KMC, a result directly
comparable to nanoscale experiments.

1. INTRODUCTION

Alloy surfaces are typically enriched with one of their
constituent elements, particularly in the top layers, because
of differences in the surface energies of pure metals. This
surface segregation process leads to metallic demixing, which is
of relevance to many different fields of research such as
catalysis and metallurgy, considering that in situ trans-
formations can affect the chemical activity or structural
integrity gained from homogeneously alloying pure metals
together. Alloy surface segregation and ordering has been
measured experimentally both in vacuum and gas environ-
ments, with differences in the equilibrium alloy composition
induced near the exposed top layers for many bimetallic
alloys.1−6 Consequently, studies of alloy surface trans-
formations are influenced by prior phase separation in vacuum
during pretreatment. A decoupling of the experimental
environment from the pretreatment environment is required
to understand the transient effect on nonequilibrium surface
composition because nanoscale elemental mapping is not
feasible on relatively short microsecond (μs) timescales even
using electron and X-ray diffraction.
Molecular dynamics (MD) simulations can generally resolve

atomic transitions on the picosecond (ps) to nanosecond (ns)

timescales. While these short timescale dynamics can be easily
investigated using energetic models based on either classical
force fields or first-principles methods, longer timescales that
are often more relevant experimentally are challenging to
realize with conventional resources and techniques.7−9 As
shown in the current work, alloy surface segregation occurs
over millisecond (ms) timescales that are impractical to obtain
using conventional MD simulations. This goal can be achieved
with accelerated methods including adaptive kinetic Monte
Carlo (AKMC) and temperature-accelerated dynamics
(TAD).10−12 These two methods were employed in a
multiscale approach to study surface segregation in ceramics
(rocksalt oxides) during oxidation.13 Also, more recently,
surface segregation and timescales in PdAu nanoparticles have
been studied using AKMC.14 However, alloy segregation and
timescales related to the metallic dopant dynamics are not well
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understood in nanoscale thin films, as these require larger
systems (>100 atoms) to accurately simulate the region
between bulk and exposed surface. These larger, periodic
systems can approximate the semi-infinite boundary for the
dopant concentration present in thin films, which could differ
from that of nanoparticle (NP)15,16 systems at least for
relatively small examples. In addition to varying finite-size
effects between NPs of different sizes, NPs also exhibit strain
responses from overall lower surface coordination near edges
and vertices compared to pristine, periodic films without these
edges. These strain effects result in core-shell structures for
CuNi NPs that do not appear in thin films.17,18 A recent KMC
study investigated the dynamics in bulk NiFe solid solution,
reporting that the vacancy migration barrier is highly
influenced by the local composition, a behavior that the
authors predict will influence the rate of microscale phase
transformations.19 Previously, only the dependence of
activation energy on the overall alloy composition could be
predicted or measured with any accuracy.20 The failure of
these global models for concentrated solid solutions is known,
although they may be corrected by sampling transition energies
in differing chemical environments.21

In this study, we model the nonequilibrium surface
segregation process by employing multiscale simulation
methods that probe the dynamics from picosecond to second
timescales. We focus our investigations on cupronickel
(CuNi), which exhibits surface segregation at elevated
temperatures in vacuum, enriching with Cu near the surface
and Ni in the bulk.22,23 The CuNi alloy is of interest for
different applications with extreme environmental conditions
including marine settings because of its resistance to corrosion
by seawater,24,25 as well as a high-temperature catalyst for
thermal CO2-to-syngas-to-fuel conversion.

18,26−28

To date, the transient dynamics of segregation in CuNi have
not been investigated. Previous studies have employed Monte
Carlo (MC) to show that the Ni solute concentration is
significantly decreased in the top three surface monolayers for
all slab orientations, approaching its value in the bulk at a
depth of four or five atomic layers below the surface.29−31

While MC simulations describe the systems in equilibrium,
they do not give a timescale for the segregation process. In
contrast, MD can provide a timescale for dynamics, but it has
not been utilized before to study transient dynamics of the
segregation process. Limited investigations of dislocation slip
under applied stress (work hardening) or melting in CuNi32,33

have been carried out using MD because these processes occur
over ns timescales, yet the impact on larger-scale reordering on
experimental timescales was not explored in those studies.
Thus, the mechanism, as well as the timescale, for trans-
formation from a randomly mixed to ordered alloy on the
nano- and microscales remains unclear.
Accelerated methods can provide insight into longer

timescales into atomistic mechanisms of surface segregation
phenomena. Previously, AKMC investigations of the segrega-
tion kinetics of PdAu nanoparticles showed greater kinetic
stability because of reduced strain in the mixed phase.14 In the
present work, we probe segregation dynamics in planar, (100)
CuNi surfaces, employing conventional MD and three
accelerated dynamics methods: parallel trajectory splicing
(ParSplice), AKMC, and KMC with kinetic barriers derived
from a cluster expansion. ParSplice affords accurate system
evolution up to ∼10 μs, while AKMC and KMC simulate
longer timescales up to ms and seconds, respectively.

ParSplice11 extends MD simulation times by leveraging
parallel computers to carry out parallelization in the time
domain, in contrast to the usual spatial domain decomposition
approaches.34,35 Thus, with ParSplice, it is possible to simulate
small systems over very long timescales, again in contrast to
conventional parallelization approaches that are efficient at
spatially decomposing large systems simulated on short
timescales. This is accomplished by concurrently generating a
large number of independent, short trajectory segments using a
procedure that guarantees these segments can be assembled
into a longer state-to-state trajectory that is statistically
correct.36 Many segments begin from the current state and
evolve up to a user-specified time, typically reaching multiple
unique endpoints before this time elapses. Periodic quenching
is used to identify transitions between metastable states and
distinguish segment terminations. Then, a unique hash and
graph are provided for each segment to allow for rapid
indexing from the database. It can be shown that ParSplice
trajectories can become arbitrarily accurate by adjusting the
estimate of the so-called correlation time of the dynamics, at
the expense of a computational overhead.37 When the
dynamics follow from a sequence of rare events, ParSplice
can provide a computational speedup that scales with the
number of processors used; it is therefore especially powerful
when deployed on massively parallel computers.
KMC-based methods do not have a fixed timestep; instead,

they find the time elapsed for the first escape from one state to
another, allowing for large periods of vibrational motion in the
atomic system to be bypassed.14,38 These escape times
correspond to reaction rates, which are calculated adaptively
or “on the fly” to construct an AKMC state model: nothing in
the output event table is predefined or assumed from prior
knowledge.12,14,38 AKMC uses minimum-mode following
searches or high-temperature MD to construct this event
table: the transition state energies (activation barrier heights)
are found using single-ended saddle point finding algorithms
such as the dimer method.39−41 To achieve further acceleration
while maintaining as much of this accuracy as possible, in the
present study, we use off-lattice dynamics from AKMC to fit a
more approximate, lattice-based KMC model, which function-
ally depends on the Ni coordination via a cluster expansion.
Our multiscale approach produces a hierarchy of trajectory

data for the segregation process over a broad range of
timescales. To represent trajectory data on varying scales and
fidelities, we track physical properties including the local defect
chemical environment and its influence on the correlated rates
of segregation and vacancy migration. Furthermore, we find
that segregation in the top layer is a function of the rare re-
entry of a vacancy from the surface to the subsurface, which
only occurs with a frequency of 10 μs because of a high kinetic
barrier, greatly increasing the time required for the surface to
be completely depleted of Ni. We also determine that the
number of dopant atoms in the 1st and 2nd coordination shells
around the point defect alters its migration energy, affecting
the rate of composition change. The consistency of system
evolution during segregation by thermal annealing across all
the accelerated methods is examined on many timescales; this
evidence supports each technique’s further use in multiscale
simulations in combination with the data processing methods
used in this work.
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2. METHODOLOGY

2.1. Validation of the Embedded-Atom Method
Potential. A reliable interatomic potential is required to
obtain accurate MD of surface segregation and equilibrated
structures. Here, we employed the embedded-atom model
(EAM) potential of Fischer and collaborators, which is
designed to model CuNi phase segregation across grain
boundaries and is parameterized with surface energies, lattice
constants, vacancy migration energies, and relevant quantities
governing the rate of metallic phase separation.42 We first
verified the applicability of this potential to study CuNi surface
segregation by comparison of calculated surface energies with
those obtained from spin-polarized DFT calculations carried
out using Vienna ab initio simulation package (VASP) with the
Perdew−Burke−Enzerhof (PBE) exchange-correlation func-
tional,43−47 see SI Appendix A, Table A1. Furthermore, we
verified that the segregation of Ni to the bulkfrom the 1st to
the 2nd or 3rd layeris always favorable, that is, ΔENi,surfi⃗nterior
≈ −0.4 to −0.3 eV from DFT and EAM, also in agreement
with previous ab initio calculations.48 Furthermore, we found
good agreement with the previously reported anisotropic,
thermodynamic tendency for Ni to segregate to exposed
<100> and <110> facets in favor of <111> surfaces.23,30

2.2. Slab Models and the Initial State for Annealing.
We employed slab models of the (100) surface termination
that are composed of 216 and 384 atoms by randomly
substituting Cu with Ni. These slabs were 12 monolayers in
thickness with 3 × 3 and 4 × 4 surface periodicity; nearly
doubling the vacancy concentration (1:216 vs 1:384 atoms)
did not affect our observed mechanisms or energetics. Thus,
systems of smaller surface periodicity (3 × 3, 216 atoms) were
simulated to realize the longest timescales for higher fidelity
time-averaging and activation energy histograms. MC simu-
lations across the composition range of 2.7−16 at% Ni and a
temperature range of 300−700 K showed no detectable
variation in the amount of Ni segregated. For this reason, we
chose to exclusively simulate systems with 16 at% Ni at 500 K
with the accelerated MD methods.
The equilibrium composition profile of the CuNi (100)

surface alloy is determined using MC. The method attempts
106 MC swaps of Cu and Ni atoms with subsequent
minimization and an acceptance probability as determined
via the Metropolis algorithm.49 MC composition profiles are
found to be consistent with similar reported profiles22,29−32,50

across a range of compositions and temperatures, see SI
Appendix B. Such agreement with previous computational and
experimental results is a further validation of the reasonable
accuracy of the EAM potential.
2.3. Multiscale Simulation Hierarchy. The methods

employed in our multiscale hierarchy are described as follows,
in the order of accessible timescale: MD in the NVT ensemble
was generated using a Langevin thermostat, as implemented in
the large-scale atomic/molecular massively parallel simulator
(LAMMPS) code.51 Because the low temperature (500 K)
used in the work negligibly alters the alloy lattice spacing, the
structures do not require NPT equilibration of the system and
slab volumes. Furthermore, ParSplice, AKMC, and KMC do
not yet have simulations in NPT ensemble implemented,
although this may change in the future. Our simulation
approach fixes the slab volume during the equilibration and
production phases by maintaining a constant surface area for
both sides of the slab.

Many instances of LAMMPS were then orchestrated by the
EXAALT/ParSplice code [http://gitlab.com/exaalt] to carry
out long-time ParSplice simulations. Direct MD realized
nanoseconds of simulated time using the velocity Verlet
algorithm and modest resources (4 processors). ParSplice
accelerated these dynamics up to μs timescales using 224
processors. Both standard MD and ParSplice were carried out
in the same way: after initializing particle velocities according
to a Boltzmann distribution representing the target temper-
ature, the systems were equilibrated with a 2 fs timestep and a
1 ps temperature relaxation time for 200 ps. Multiple random
number seeds are used by ParSplice to initialize system velocity
many times during replica dynamics, allowing exploration of
the local state space to identify new segments.35 The first
segment identified escaping to a new state is appended to the
end of the parallel trajectory. After the equilibration phase of
MD, a further 400 ns were simulated to constitute the
production phase, while ParSplice was employed to accelerate
this simulation time up to 35 μs. Minimization was done with
the conjugate gradient algorithm using convergence criteria of
10−8 eV and 10−6 eV/Å for the energy and forces,52

respectively. These quenching parameters are also used by
ParSplice to identify state transitions and properly terminate
each parallel MD replica.
In contrast to ParSplice and MD, the AKMC and KMC

models use a nonconstant timestep, which varies to match the
timescale of the first escape time from a given state. Over
longer timescales, up to many seconds, KMC-based accel-
eration approaches the segregation found with MC.12,38 KMC
methods simulate the time evolution of the system, requiring a
predetermined event table in which the kinetic rate of each
event is approximated through the Arrhenius relation to the
precalculated activation energy. At each step, a random event i
is selected from the table in the order from 1 to i with the
condition

∑ ∑ ∑< ≤
−

−r p r r
i

i

N

N

i

i
1

1

1 1
1 1

where ∑ ri
i1 is the sum of the rate from event 1 to event i,

∑ −
−ri

i1
1

1 is the sum of the rate from event 1 to event i−1, p1 is
a random number between 0 and 1, and ∑ rN

N1 is the total rate
of the event table. Time is then incremented by

−

∑

p

r

ln( )
N

N

2

1

where a random number p2 is drawn between 0 and 1. AKMC
allows the system to find all potential events without a
predetermined event table.45 In order to search for events,
AKMC uses high-temperature MD and the climbing-image
nudged elastic band (CI-NEB) approach to calculate the
saddles for the new states using the EON software.53

To reach even longer timescales with KMC, an energy
estimation based on the local environment of the vacancy was
generated by a cluster expansion. The energy was predicted to
be dependent on the concentration of Ni and Cu located in the
first nearest neighbor shell of the vacancy. In the FCC CuNi
alloy, there are 8 nearest neighbors for the vacancy on the
surface and 12 nearest neighbors for the vacancy in the
subsurface. Sequentially, the energy-fitting model was used to
determine the barrier and rate of the events in the event table
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based upon the trajectory data from our AKMC simulations.
More information about the cluster expansion method is
provided in the SI, Appendix C. Furthermore, we found
satisfactory agreement between AKMC and KMC by carrying
out the dynamics up to 300 μs, further validating the KMC
model (see SI, Appendix D).
Finally, the concept of an equilibrium rate was introduced to

further accelerate the timescale accessible by KMC. In this
approximation, no rate was allowed to be larger than the
specified equilibrium rate with the assumption that all states
connected by rates faster than the equilibrium rate should
already be in equilibrium. In the case of CuNi segregation, the
planar diffusion of a vacancy on the exposed surface is rapid,
equilibrating on much shorter timescales than for defect re-
entry to the subsurface to occur even once. Ultimately, the
effect of an artificial equilibrium rate in KMC simulations is
that these key transitions can be sampled more effectively
instead of the many horizontal transitions that do not alter the
composition with respect to the surface depth.
In both AKMC and KMC simulations, the temperature was

set to 500 K, and the prefactor for the rates was fixed at 5 ×
1012 s−1. The optimizer used in AKMC was L-BFGS, with a
convergence criterion of 0.01 eV/Å.53 System evolution from
AKMC reached ms timescales running for a week on 24 cores.
The following KMC timings are the average of five separate
runs in both cases: KMC realized seconds of simulation time
running on a single processor for 2 h with the added
equilibration rate. KMC without the equilibrium rate was only
simulated up to 10 ms because only 1 min of wall clock time
was necessary before the surface vacancy trapping described
above halted Ni segregation in the system.

3. RESULTS AND DISCUSSION
The equilibrium composition profiles obtained with MC
(Figure 1) exhibit Ni migration out of the top three surface

layers, while the concentration of the fourth and fifth layers
approach the bulk value. This trend did not quantifiably vary
with changes in system temperature or Ni concentration. The
near-surface Ni concentration observed with the EAM
potential agrees with the profiles derived from previous MC
simulations22,29−32 as well as experiments.1−3,23

Next, we probed the segregation dynamics using MD,
ParSplice, AKMC, and KMC, starting from the same initial
configuration of the random alloy. Lattice vacancies are the
primary defect responsible for alloy segregation: the only other
mechanism, self-interstitial migration of metal atoms to
octahedral or tetrahedral sites, is destabilized by greater
formation and migration energies than those for the point
defect (vacancy).54 Hence, our simulations included a single
vacancy to facilitate surface segregation.
Figure 2 shows the composition over time within the top

layer of our Cu−16at%Ni (100) slab model for a single
simulation of each type within our methodology. The
concentration of Ni atoms in the top surface layer decreases
over time as it transitions from a uniform distribution to that of
equilibrium, as shown by the MC simulations in Figure 1. The
accessible simulation time increases sequentially for each
method (MD, ParSplice, AKMC and KMC). In MD (Figure
2a), the vacancy diffuses to the surface at 0.3 μs, displacing a
Ni atom to the subsurface; up to the total time of 0.4 μs, the
vacancy remains trapped on the surface so that the Ni
concentration does not change. With over 30 different MD
simulations, we observed that the time for vacancy percolation
to the surface was consistently less than 1 μs, resulting in
similar degrees of segregation, as shown in Figure 2a.
ParSplice (Figure 2b) shows similar dynamics as in standard

MD, with vacancy migration to the surface in a fraction of a μs.
Throughout the simulation, the ParSplice trajectory visited
8,278 topologically unique states while making 37,458
transitions, the vast majority of which occurred after the
vacancy had reached the surface. The parallel acceleration of
ParSplice increased the timescale from the standard MD
simulation by a factor of ∼100 up to 35 μs, but even at this
longer timescale, the vacancy remained trapped on the surface,
and no additional Ni segregation was observed. As expected,
ParSplice is consistent with MD on timescales where they
overlap (0.4 μs) not only in terms of bulk vacancy diffusion but
also the timescale at which the vacancy diffuses to the surface.
We have repeated the ParSplice simulations dozens of times
with different random seeds observing early vacancy diffusion
to the surface (before 1 μs) in nearly all trials, just as with MD.
With AKMC, we increased the simulation timescale by

another order of magnitude (Figure 2c): a total of 144,597
transitions evolved the system through 32,369 unique states (a
similar ratio of transitions to new states found as in ParSplice).
It should be noted that our AKMC approach uses coarse-
graining following the MC with the absorbing Markov chains
(MCACM) method, allowing many more transitions to be
considered via an analytic solution to the rate equations.55

From the AKMC dynamics, we can observe events in which
the vacancy moves from the surface to the subsurface at a
timescale of roughly 50 μs. Over the simulation time of 300 μs,
five such events were observed, resulting in two Ni atoms and
three Cu atoms migrating from the surface to the subsurface.
With our KMC model (Figure 2d), we executed 4.7 million

transitions generating 10 ms of simulated time. Over these
timescales, the system appears to approach equilibrium, with
fluctuations in the surface concentration between 0 and 5% Ni.
However, what is not obvious from these plots is that the
vacancy spends all of its time in the first and second layer, so
that Ni segregation only occurs between the surface and
subsurface layers. This behavior originates from a disparity in
barrier heights that embodies the “low-barrier problem,” more
aptly referred to as the “heterogeneous barrier” problem.

Figure 1. Ni composition profiles of Cu−16at%Ni (100) surface as a
function of the layer depth after MC annealing at 500 K. The slab has
12 layers with layers 1 and 12 exposed to the vacuum. Composition is
normalized by the number of atoms in a pristine FCC <100> layer
(18), resulting in a mismatch between the bulk composition of layer 6
(∼22 at% Ni) and the overall composition (16 at% Ni).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00303
J. Chem. Theory Comput. 2022, 18, 4447−4455

4450

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00303?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00303?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00303?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00303?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Dynamics with a mix of low and high activation barriers are
inherently more difficult to accelerate because groups of states
interconnected by low barriers will always dominate the
trajectory during naiv̈e state space exploration.8,11 The barrier
for vacancy surface diffusion is 0.4−0.5 eV, whereas the barrier
for the vacancy to go subsurface is 0.8−0.9 eV. Thus, we are
simulating on the order of a million KMC steps with the
vacancy mostly diffusing on the surface for one subsurface
diffusion event, offering a low chance for segregation to occur.
Even factoring in the small cost of each KMC step, this makes
it impossible to simulate an equilibrium distribution of Ni in
the top three layers.
To further accelerate the dynamics and mitigate the

“heterogeneous barrier” problem, in our final simulation

(Figure 2e), we perform KMC with the equilibrium rate
approximation described in the Methods section, realizing 160
million transitions to reach a simulated time of 1 s. Here, the
idea is that the vacancy will quickly reach local equilibrium
diffusing in the top layer, and no new states of interest are
explored until subsurface diffusion occurs. Because vacancy
surface diffusion occurs on a timescale of ns, and diffusion of
the vacancy to the subsurface occurs on a timescale of μs, we
chose an equilibrium rate of 40/μs to slow the surface diffusion
and accelerate the diffusion of the vacancy to the subsurface
and below. Figure 2e shows that on a timescale of seconds, the
surface Ni concentration fluctuates around equilibrium after
0.4 s until the end of our simulation lasting 1 s.

Figure 2. (left) Ni content in the top layer of Cu−16at%Ni(100) with a vacancy for (a) standard MD, (b) ParSplice, (c) AKMC, (d) KMC, and
(e) KMC with applied equilibrium rate. Composition is normalized as in Figure 1. (Right) Orthographic and side views of the final slab model from
each simulation are provided for reach simulation.
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Figure 3. Ni composition averaged over five KMC simulations for the (a) bottom three layers and (b) top three layers over 2.5 s with an
equilibrium rate of 40/μs. The bold line represents the 0.5-second-average calculated from the lighter single-frame datapoints, and the dashed line
corresponds to the average concentration of Ni by MC calculation with the EAM potential at each layer when the system moves toward
equilibrium. Composition is normalized as in Figure 1.

Figure 4. (a) Histogram of vacancy migration energy barriers obtained from a 319 μs AKMC simulation. (b−d) Total residence time for the
vacancy in different chemical environments for (b) MD, (c) ParSplice, and (d) AKMC. Cumulative times are normalized by the prevalence of each
composition type in the system rendering them unphysical.
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In order to more accurately estimate the timescale required
to obtain the equilibrium profile, we performed five individual
KMC simulations with the same equilibrium rate (40/μs),
extending the total time to 2.5 s corresponding to about 400
million transitions. Although we utilize the per-layer final
compositions previously shown in Figure 1 from MC annealing
as a predictor for the local equilibrium composition, the
moving average for local concentration from KMC may
continue to fluctuate after this target composition is first
realized. Figure 3 shows the moving average of Ni composition
obtained from these KMC simulations in the bottom three
layers (referred to as layer 1, 2, and 3) and the top three layers
(referred to as layer 12, 11, and 10) in bold lines compared
with the corresponding, nonmoving average equilibrium layer
compositions obtained by MC (data from Figure 1) in dashed
lines. From Figure 3a, we can see that layer 1 reached the MC
value in less than 0.1 second and even approached zero Ni
concentration at ∼1.5 s, although this does not occur in MC
annealing on average, during which a single Ni atom remained
on the surface for most of the equilibrium samples (Figure 1).
Layer 2 exhibits more dramatic changes. The local composition
started from 30% Ni, dropped to the MC composition of 10 at
% ∼1.75 s, and remained near the estimated value from MC
profiles until the end of the simulation. While the MC
simulation left 16% Ni in layer 3, our KMC model shows more
Ni segregations, leaving 10% Ni in the layer. This might
explain the higher Ni composition profiles of the top two
sublayers (layer 11 and 10) in Figure 3b. While layer 12 shows
similar behavior as layer 1, layer 11 did not reach the MC
profile until 2.5 s when its composition started to move toward
MC composition, and layer 10 first reaches the MC profile at
∼0.6 s before the composition increased again. The overall
profile, nonetheless, clearly shows an increase in the number of
Ni atoms in bulk layers, indicating thermodynamic tendency
for this dopant to remain in the bulk rather than on the surface.
The state space exploration from KMC is inherently much
greater than that of MC, which is not a dynamical method and
can only follow an unphysical trajectory toward the lowest
system energy.
Apart from surface effects, the local chemical environment

around a vacancy is expected to determine the system
energetics and the rate of Ni composition change. To
investigate this, we tracked the number of Ni atoms within a
5 Å radius of the vacancy. The number of Ni atoms in the local
environment ranges from 0 to 12, with three distinct “bins” of
equal width formed for low, mixed, and high Ni content
environments. The spectrum of barriers calculated during
AKMC for all vacancy migration events within this trajectory is
presented as a histogram in Figure 4a, which shows the lowest
transition state energies for vacancy migration in Ni-rich
regions of the alloy. Additionally, because the system has lower
Ni content than Cu, the probablities are smaller for transitions
into/within Ni-rich regions than for those with mixed and Cu-
rich compositions. Vacancy migration energies are shifted
closer to 0.4 eV in the Ni-rich regions than for migration in
Cu-rich regions according to Figure 4a. We can deduce that
vacancy migration is favored in the Ni-rich regions,
contributing to the lower dwell time near Ni as the vacancy
more rapidly diffuses toward and away from this dopant.
Vacancies must slowly explore the Cu-rich regions of the host
lattice before returning to possibly segregate the Ni atoms
away from the surface. The order of the normalized, integrated
peak areas in Figure 4a also supports this conclusion.

The overall time spent in low Ni, mixed, and high Ni
content environments is also shown with respect to time in
Figure 4b−d using a cumulative measure of residence time for
MD, ParSplice, and AKMC and rescaling this measure by the
prevalence of each environment in the system. The number of
Ni atoms in the vicinity of the vacancy modulates these
timescales substantially but in a similar fashion for all methods.
Furthermore, the logarithmic trendlines and their orders of
magnitude agree across overlapping timescales for MD/
ParSplice (ns) and ParSplice/AKMC (μs): this supports the
hierarchy of methods utilized herein as a theoretical foundation
to connect correlated observations evolving across many
timescales for the same process. The cumulative dwell time
and thermodynamic trends match for all of the simulation
methods in the order of integrated peak areas (Figure 4a) and
residence times (Figure 4b−d): tCu − rich

total > tmixed
total > tNi − rich

total .
Although this agreement does not hold at very early (ps)
simulation times with low cumulative sums, particularly for
MD which is noisier compared to accelerated methods, the
trend becomes evident in the ergodic limit. The residence
times of vacancy chemical environment presented in Figure
4b−d confirm that the local composition is an effective
determinant of where a vacancy spends most of its time during
annealing and segregation. Specifically, the position of Ni in
the lattice is a minor determinant of the dynamics because the
dopant slightly biases the vacancy’s random walk by ∼0.1 eV.
This effect has also been documented in Ni−Fe surfaces
annealed at 1100 K using KMC, where the local composition
and the identity of the atoms exchanging during segregation
(solute vs solvent) significantly influenced the vacancy
migration energy and the measured tracer diffusion coef-
ficient.19

4. CONCLUSIONS

In summary, we have applied three accelerated dynamics
methods to examine the rate of segregation in CuNi alloy from
nanosecond to second timescales, reaching 2 s of simulation
time and the equilibrium composition with KMC. This
composition profile shows no Ni on the top surface monolayer,
with less than 15at% Ni in the second layer compared to 22at%
Ni in the bulk on a per-layer basis, in agreement with MC
predictions. Although most of our accelerated methods were
used to simulate up to the μs timescale, only modified KMC
dynamics could reach the equilibrium profile obtained from
MC and previous experimental observations. Our model
estimates that the timescale for segregation in the top layer
to reach equilibrium is on the order of 0.1 ms, while
equilibrium segregation does not penetrate to the 3rd layer
until timescales on the order of 100 ms. The equilibrium
timescales for surface segregation of any FCC bimetal can be
determined with a combination of AKMC and KMC.
However, KMC-based methods require assumptions regarding
the transition state theory, and they do not resolve fast atomic
exchange processes as well as ParSplice and MD. Our study
shows that a model for the relationship between solvent
distribution, activation energy, and large-scale phenomena like
segregation may be developed from further simulations of
bimetallics on experimental timescales. Our methodology is
general and can be applied in the future using other
interatomic potentials, including those derived from machine
learning.56−60
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