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ABSTRACT: Understanding complex, multistep chemical reac-
tions at the molecular level is a major challenge whose solution
would greatly benefit the design and optimization of numerous
chemical processes. The separation of rare-earth (4f) and actinide
(5f) elements is an example where improving our chemical
understanding is important for designing and optimizing new
chemistries, even with a limited number of observations. In this
work, we leverage data-driven artificial intelligence and machine-
learning approaches to develop kinetic reaction networks that
describe the liquid−liquid extraction mechanism of uranium using
N,N-di-2-ethylhexyl-isobutyramide (DEHiBA). Specifically, we
compare and contrast the properties of two classes of models:
(1) purely data-driven models that are regularized using chemistry-
agnostic, L1 regression and (2) chemistry-informed models that are regularized using relative reaction energies provided by quantum
mechanical calculations. We observe that purely data-driven models are unbiased, simple, and accurate in their predictions of
experimental measurements when provided with sufficient data but are difficult to fully constrain and interpret. In contrast,
chemistry-informed models exhibit significantly improved chemical interpretability and consistency, providing a detailed description
of the separation process while achieving high accuracy through ensemble averaging. Overall, the dominant species predicted to be
extracted into the organic phase is UO2(NO3)2(DEHiBA)2, agreeing with experimental slope analysis, thermodynamic modeling,
EXAFS, and crystal structures. This work demonstrates that leveraging the fundamental structure of the problem can lead to efficient
learning schemes that provide both accurate predictions and chemical insights at a low computational cost.

■ INTRODUCTION
The development of efficient and cost-effective chemical
separation processes has long been recognized as a challenging
task.1,2 Isolating specific elements from chemical mixtures is
ubiquitous, with applications that include extracting chemicals
and materials from natural resources, removing anthropogenic
contaminants and emissions, and facilitating recycling.
Consequently, the development of methods which reduce
the time, energy, and capital used in chemical separations
would provide significant global benefits.2 This study focuses
on liquid−liquid extraction, the primary technique employed
for large-scale separations of rare metals in advanced
technologies.3,4 In this process, the metals are first dissolved
in an aqueous phase and contact with an organic phase
containing specifically designed extractants. These extractants
then selectively bind to the target metal, altering its aqueous
solubility to promote transfer into the organic phase.
Separation is finally achieved by partitioning the organic and
aqueous phases, thereby isolating the desired metal.5

An important application of liquid−liquid extraction is the
separation of actinide elements, particularly uranium, from
used nuclear fuels.4 Nuclear energy�a low-carbon energy
source�holds potential for addressing global energy demands
while aligning with decarbonization objectives.6 However, to

maximize the efficiency of the nuclear fuel cycle and limit the
lifetime and volume of generated waste, advanced extraction,
separation, and purification processes are essential.5,7,8 Current
reprocessing techniques rely on the use of organophosphorous
ligands to selectively bind and extract uranium, the primary
target as it constitutes the majority of nuclear waste and can be
recycled effectively as a fuel source.9 However, these ligands
present challenges including solubility issues, degradation, and
the generation of secondary waste. As a result, significant
research efforts have been focused on developing new
extractants to replace these ligands. Here, N,N-dialkylamides
have emerged as promising candidates due to their strong
affinity toward uranium, favorable degradation products, and
adherence to the CHON principle�consisting of solely
incinerable elements carbon, hydrogen, oxygen, and nitro-
gen�making them a sustainable and attractive option for
uranium reprocessing.
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Once a new extractant has been identified, designing and
optimizing the conditions for efficient liquid−liquid separation
on the industrial scale become a key challenge. This difficulty
arises from the high-dimensional chemical space that must be
explored, encompassing variables such as concentrations of the
extractant, acid, and metal; temperature; mixing time and rate;
and the potential need for additives like inorganic salts, hold-
back agents, or phase-modifiers. Exploring this chemical space
through experimentation alone is extremely tedious, under-
scoring the need for molecular-level insights to help guide and
streamline the process.10−13 Although N,N-dialkyl mono-
amides were first identified for uranium separations in the
1960s,14 their application in reprocessing used nuclear fuel is
still limited, highlighting the challenges of transitioning from
discovery to industrial use. The majority of monoamide
experimental studies have focused on their thermodynamics,
investigating distribution ratios as a function of various
experimental parameters. This has provided foundational
insights, such as the structure of the predominant extracted
species and guidelines on designing the carbon structure for
improved selectivity and solubility.15−19 However, a compre-
hensive molecular understanding of the separation process
remains incomplete, with only a few studies employing
molecular dynamics and density functional theory (DFT)
calculations to probe the extraction mechanism.20,21 Closing
this knowledge gap could significantly accelerate the transition
from extractant discovery to widespread industrial application.
Chemical reaction networks described by mass action

kinetics represent a fundamental modeling approach for
representing the outcome of complex reactions over
time,22,23 which, in principle, could be used to reveal the
basic properties of the system. However, these models can
contain a large number of adjustable parameters that are
difficult to individually determine through either experimenta-
tion or simulation. With the advance of artificial intelligence
(AI) and machine-learning (ML) methods, deep learning
architectures such as artificial neural network have been used
to predict reaction parameters,24 while data-driven chemical
reaction networks22 have been suggested as an additional
approach to solve this problem.25−27 By leveraging available
experimental data, reaction networks governed by mass action
kinetics can be learned, providing a practical approach to
predict the outcome of complex reactions, optimize reaction
conditions, and gain valuable chemical insights.24,27

In this paper, we investigate the properties of such data-
driven kinetic reaction network models to describe speciation
changes during uranium extraction with N,N-di(2-ethylhexyl)-
isobutyramide (DEHiBA) in the presence of nitric acid. A
previous study has performed an extensive literature review on
uranium extraction with N,N-dialkyl monoamides identifying
DEHiBA as the most well-characterized system.28 Specifically,
we examine and contrast two model variants: purely data-
driven (DD) and chemistry-informed (CI). Purely data-driven
models rely on only minimal assumptions and are regularized
by using a chemistry-agnostic approach (L1 regularization).
Alternatively, chemistry-informed models incorporate regulari-
zation based on insights from explicit quantum calculations
using DFT. In the following, DFT is used to estimate the
relative free energies of ligand exchange and aqueous-to-
organic phase transfer reactions which govern the speciation at
equilibrium, offering thermodynamic insights that can
potentially enhance the models’ description of the extraction
processes.

The manuscript is organized as follows: The Methods
section outlines the general mathematical structure of the
kinetic models. The Results and Discussion section analyzes
the performances of individual and ensembles of purely data-
driven and chemistry-informed models, focusing on the three
key aspects: prediction accuracy, robustness, and chemical
interpretability. The trade-offs between data-driven and
chemistry-informed models are finally discussed in the
Conclusions.

■ METHODS
Data Set on Uranium Extraction with DEHiBA. A data

set of reported experimental distribution ratios pertaining to
the liquid−liquid extraction of uranium with DEHiBA in the
presence of nitric acid was curated from the open
literature29−31 and from previously unreported experiments
carried out at Idaho National Laboratory.32 This extraction
system provides the most comprehensive kinetic data set
compared to other systems, which are often limited to a few
tens of experiments with relatively homogeneous contact
times.28 The curated data set covers a wide range of initial
uranium (10 μM to 1.25 M), DEHiBA (0.2−1.5 M), and nitric
acid (0.01−6.0 M) concentrations along with various contact
times ranging between 2 and 60 min. Previous experimental
studies have shown that the extraction of uranium with
DEHiBA reaches equilibrium in less than 30 min.30,31

Therefore, in order to enforce a proper equilibrium long-
time limit, a data augmentation approach was used where
surrogate data at a contact time of 60 min was generated by
duplicating the data acquired at a contact time of 30 min. The
full data set used to develop the kinetic models is reported in
the Supporting Information and contains a total of 172
uranium distribution ratios (including those generated by data
augmentation) ranging from 0.002 to 8.095.
Chemical Reaction Networks and Model Regulariza-

tion. The kinetic reaction networks used in this work are
based on K2-SUB, a kinetic model previously developed to
describe heterogeneous aerosol reactions occurring between
bulk and gaseous phases.33 The model was adapted for liquid−
liquid extraction problems, as illustrated in Figure 1. In the
present context, the model simulates uranium extraction across
three separate phases: the aqueous bulk phase, the organic bulk
phase, and the aqueous−organic interface. Speciation changes

Figure 1. Schematic illustration of kinetic reaction network models of
liquid-liquid extraction.
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are modeled through 36 binary intraphase chemical reactions,
while mass transport is described by 22 unitary interphase
diffusion steps. Altogether, these form the elementary steps of
uranium extraction with DEHiBA which has been postulated
to be of the form29,34

F

UO 2NO 2DEHiBA

UO (NO ) (DEHiBA)

2 (aq)
2

3(aq) (org)

2 3 2 2 (org)

[ ] + +

[ ]

+

(1)

Here, nitric acid is assumed to be fully dissociated throughout
the extraction process as the highest initial [HNO3](aq) used in
the data set was 6.0 M. Figure S1 reports the complete list of
elementary reactions and diffusions taken into account for the
model which is parametrized by a total of 116 adjustable rate
constants.
Training of the kinetic models consisted of setting up and

solving the system of ordinary differential equations (ODEs)
that describe the time evolution of the various chemical
species’ concentrations provided in Figure S1. Initial
concentrations for the base reactants ([UO2](aq)2+ , NO3

−
(aq),

DEHiBA(org)) were set according to the experimental
conditions provided in the data set, while all other species’
concentrations were initialized at zero. From there, the
adjustable kinetic parameters were randomly initialized,
allowing for a forward solution of the ODEs using differ-
entiable ODE solvers implemented in the pytorch framework
torchdif feq.35 Final rate constants were determined through
model optimization using backpropagation, minimizing a loss
function of the form:

n
D Dloss

1
( )

i

n

i i
1

,pred ,true
2=

= (2)

where Dpred and Dtrue represent the predicted and measured
uranium distribution ratios, respectively. Here, the distribution
ratios were defined as the change in uranium concentration in
the aqueous phase before and after extraction, i.e.,

D
U U

Ui ,pred
(aq),initial (aq),final

(aq),final
=

[ ] [ ]
[ ] (3)

where [U](aq),initial and [U](aq),final represent the initial and final
uranium concentration in the aqueous phase, respectively. In
total, models were optimized until their loss function fell below
0.01 or until they reached 1000 epochs for data-driven or 500
epochs for chemistry-informed (vide inf ra), whichever came

first. The maximum cutoff for the number of epochs was
determined by tracking the typical loss evolution, as reported
in Figure S2.
To assess the ability to discover the relevant separation

chemistry, two separate regularization strategies were em-
ployed to create either data-driven (DD) or chemistry-
informed (CI) kinetic reaction network models, thereby
eliminating the need for manual selection of an initial set of
plausible reactions a priori. DD models were regularized by
using a chemistry-agnostic L1 regression approach that
automatically simplifies the rate network by favoring sparsity
in the set of adjustable parameters. This approach is meant to
be unbiased as external domain knowledge is not injected in
model training. In this case, the loss function takes the form:

n
D Dloss

1 1
( )

i

n

i
i i

j

p

j
1

,pred ,true
2

1

= + | |
= = (4)

where p is the number of adjustable parameters, λ controls the
strength of the regularization, and the β’s represent the
adjustable kinetic rate constants. Additionally, a weight (1/σi =
2.0) was assigned to data points with contact times of 2 and 5
min, while 1/σi = 1.0 was used for all other points. This was
done to account for the small number of experiments that were
performed at shorter mixing times. In total, five regularization
strengths (λ = 10−6, 10−4, 10−3, 10−2, and 10−1) were
considered for the DD models, yielding models of decreasing
complexity.
In contrast, CI models were regularized using relative

thermodynamic energies of the speciation and diffusion
reactions in Figure S1 calculated using DFT.36 DFT
calculations allow for a more comprehensive constraint of
elementary reactions involving various ligand exchange,
displacement, and association steps. This approach provides
significantly stronger constraints than relying only the
equilibrium constant of the overall reaction (i.e., eq 1)
determined experimentally.29,37,38 Here, the loss function
now takes the form:

Figure 2. Workflow of data-driven kinetic reaction networks.
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where MSLE refers to the mean squared logarithm error,
[AB](phase),eq is the concentration of species AB in either the
aqueous or organic phase at equilibrium (which is assumed to
have occurred by 60 min of contact time), ΔΔG is the
difference of intraphase reaction free energies, and ΔGorg/aq is
the free energy to transfer a complex from the aqueous to
organic phase. Further details on the regularization terms are
provided in the Supporting Information. Note that interface
species are not included in the regularization due to the
difficulty in accurately predicting their thermodynamics with
quantum calculations, as this region cannot be properly
modeled as continuum.13 Additionally, CI models contain a
reduced number of reactions and diffusion steps, as they
exclude the formation of charged species in the organic phase
since they are expected to be highly unfavorable. For these
models, five regularization strengths are considered, λ = 10−5,
10−3, 5 × 10−3, 10−2, and 5 × 10−2.
Overall, the workflow used to train the kinetic reaction

networks is summarized in Figure 2. Complete details of the
kinetic reaction network models are provided in the
Supporting Information.
Density Functional Theory Calculations. To identify

possible UO2
2+ coordination complexes, the 3D structure

generation tool Architector39 was used to construct and screen
energetically stable complexes. All complexes were created
from a UO2

2+ center varying in coordination from 6 to 8. In
total, up to two DEHiBA and nitrate ligands were allowed to
bind along the equatorial plane, while the rest of the complex
was saturated with water molecules. All nitrate ligands were
initialized as bidentate. To assemble each UO2

2+ complex, up
to 20 different core symmetries were constructed for each
coordination number, and the 10 lowest-energy initial
geometries were relaxed using the GFN2-xTB method.40,41

To mimic the aqueous and organic solution environments, two
separate relaxations were performed for each structure using
the analytically linearized Poisson−Boltzmann (ALPB) im-

plicit solvation model with water and hexane inputs. From the
Architector-generated systems, up to 10 of the lowest-energy
structures were selected for further DFT analysis. Additionally,
conformer generation on the free DEHiBA ligand was
performed with Confab as implemented in OpenBabel,42,43

and the 25 lowest-energy structures were selected for further
DFT optimization.
All DFT calculations were performed with the Amsterdam

Density Functional (ADF v2022.103) code44 as implemented
in the Amsterdam Modeling Suite (AMS).45 The generalized-
gradient approximation (GGA) of the Perdew−Burke−
Ernzerhof (PBE)46 form was used to account for exchange
and correlation effects. All atoms used a small frozen core and
a triple-ζ basis set with polarization functions (TZP) to
represent the electrons.47 Due to the large atomic number of
uranium, relativistic effects were accounted for through the use
of a ZORA Hamiltonian48−50 while Grimme’s DFT-D3(BJ)
correction51 was used to account for van der Waals
interactions. DFT geometry optimizations were performed
without symmetry constraints, and all forces were converged to
less than 5 meV/Å. Additionally, all DFT optimizations
included solvation effects through the implicit solvation model
COSMO,52 with dielectric constants (ε) of 78.39 and 1.88 to
represent the aqueous phase and organic phases, respectively.
Due to the long carbon chain of the DEHiBA ligand, all UO2

2+

complexes which contained DEHiBA were reoptimized by
exchanging the initial dielectric constant (78.39 to 1.88 and
vice versa) to increase the number of conformers sampled.
Upon complete relaxation, DFT electronic energies of all
systems were calculated using the same methodology described
above, but switching implicit solvation to the SM12 solvation
model.53,54 Overall, the final DFT-optimized structures had
mean absolute errors of 0.05 Å in their bond lengths, as
compared to previously reported measurements from EXAFS
and crystal structure measurements (see Tables S2−S4).
Reaction energies used for training the kinetic models were
calculated using only the lowest-energy structures from all
DFT conformers, as reported in Table S5. Thermodynamic
corrections to the molecular energies were obtained from
analytical frequency calculations on the lowest-energy
structures of the optimized systems.
To effectively handle xTB preliminary screening and

subsequent DFT calculations, tasks were managed with a
custom-built python asynchronous workflow using the pyiron
and f lux packages.55,56 The workflow is engineered for scaling
and distributing batches of less-than-single compute node

Figure 3. Train and test RMSE values for the (a) data-driven and (b) chemistry-informed models with different training set sizes and varying
regularization strengths (λ). The grey dotted line represents the estimated experimental uncertainty in our data based on duplicated experimental
inputs. Markers indicate the average RMSE value across the 10 separate train-test splits; the variance is presented as error bars. The total number of
trainable parameters for each model is presented in parentheses in the title.
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tasks. In total, >275 combined Architector and ADF
calculations were performed at the National Energy Research
Scientific Computing Center using this workflow.

■ RESULTS AND DISCUSSION
The performances of both the DD and CI models were
evaluated according to the root mean squared error (RMSE)
between the model-predicted and experimentally measured
uranium distribution ratios. Model training was done using a
repeated (10×) train-test split procedure considering three
training set sizes, 120, 51, and 17, corresponding to 70, 30, and
10% of the data, respectively. From there, both “single”�
referring to one kinetic model being optimized for each of the
10 train-test splits�and “ensemble”�ten separate kinetic
models (initial rate constants varied) optimized for each of the
10 train-test splits, were investigated. In the following, we
compare and contrast the DD and CI models across three
criteria: prediction accuracy, robustness, and chemical
interpretability.
Prediction Accuracy and Robustness of Single

Models. Figure 3 reports the evolution of the training and
testing RMSE values for individual DD and CI models with
respect to the size of the training set and regularization
strength. It is observed that the DD models obtained using
relatively strong regularization (λ = 10−2) exhibit prediction
accuracies in the range of 0.4−0.6 RMSE when the sizes of the
training sets were 120 and 51. For reference, the intrinsic
uncertainty in our data set was estimated as ∼0.4 RMSE using
44 duplicate experiments carried out at nominally the same
reaction conditions. Overall, these models preserve ∼20% of
their total parameters (Figure S4), therefore minimizing the
effect of overfitting to small amounts of data. However,
significant overfitting is still observed for smaller training sizes
(17) with test RMSE values in the range 1.1 ± 0.2 and training
errors lower than the intrinsic noise level. Reducing the
regularization strength (λ = 10−3 and 10−4) leads to a slight
improvement of the DD models’ predictive performance, but
signs of overfitting are still observed. Further decreasing the
regularization strength to λ = 10−6 results in the reaction
networks becoming unconstrained, retaining ∼90% of their
available parameters. As both the testing and training RMSE
values increase at this point compared with λ = 10−4−10−2, this
suggests that regularization can assist the training procedure by
restricting the number of competing parameters. In contrast,
highly regularized DD models (λ = 10−1) preserve only about
15% of the free parameters, limiting their predictive power.
Single CI models show the best predictive performance with

regularization strengths between λ = 5 × 10−3 and 10−2,
providing train and test errors on the order of 0.5 and 0.7,
respectively, when at least 51 data points are provided. Models
trained on fewer data points are susceptible to overfitting,
resulting in low training errors (∼0.4) but high test errors
(∼1.0). Similar to the DD models, both the train and test
RMSE values increase significantly (>1.0) under strong
regularization (λ = 5 × 10−2). This indicates that the chemical
information provided by DFT is likely more qualitatively than
quantitatively accurate, as strictly enforcing the predicted
thermodynamics leads to worse prediction outcomes. Such
limitations are not unexpected given the approximate nature of
the implicit solvation models and incomplete consideration of
finite-temperature effects. Further discussion of these limi-
tations can be found in the Supporting Information. A
sensitivity analysis of the loss of the CI models with respect

to the specific values of the DFT free energies (Figure S8)
indicates that the phase transfer energies of DEHiBA and
[UO2(NO3)2(DEHiBA)2] are the two key quantities that most
affect the quality of the CI models. Assuming typical errors of
the order of 5 kcal/mol on DFT results leads to predicted
changes in RMSE on the order of 0.1, which indicates that
more accurate DFT values could noticeably, but perhaps not
dramatically, improve the models.
Comparing CI to DD models generally shows that DD

models achieve higher accuracy with smaller variance. The
higher variability in the performance of CI models suggests
that the chemistry-regularized loss landscape is more difficult
to navigate than its effectively lower-dimensional L1-regular-
ized counterpart, leading to the training of CI models being
more prone to being trapped in suboptimal conditions (Figure
S2).
Overall, these results show that a moderate regularization (λ

= 10−3, 10−2 for DD and 5 × 10−3, 10−2 for CI) is highly
beneficial. Additionally, it was observed that 51 data points
were enough to provide adequate prediction accuracies
without significant overfitting.
Boosting Prediction Accuracy with Ensemble Models.

As shown above, the variability in the quality of the trained
models limits the confidence in the prediction of single models.
To circumvent this limitation, we investigated various
ensemble averaging approaches. Specifically, ten different
kinetic models�initialized with a different set of starting
parameters�were optimized for each of the train-test splits,
and final model predictions were calculated as averages of the
individual models as

D wD
i

i iE,pred
1

10

,pred=
= (6)

where DE,pred represents the ensemble-predicted uranium
distribution ratio, and Di,pred and wi correspond to the
predicted distribution ratio of model i and its associated
weight in the ensemble, respectively. Three different ensemble
approaches were studied to calculate wi: simple average (Eavg),
weighted variance (Evar.), and weighted error correlation
(Eec).
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were used to calculate the weights for the variance and error
correlation ensembles, respectively. For wi,var., Vi represents the
variance calculated on the training set of the ith model.
Therefore, models that showed a smaller variance would
contribute a larger weight in the ensemble. In wi,ec, C−1

corresponds to the inverse of the error correlation matrix of
the i and jth models calculated over the n training data as57−59
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In the previous section, 51 training points were found to be
sufficient to optimize both the DD and CI models without
significant overfitting, therefore, initial comparisons between
single and ensemble approaches were conducted using a data
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set of this size (Figure 4). Here, all DD models were
regularized with λ = 10−2 while CI models were regularized
with λ = 5 × 10−3 on each train-test split. Additionally, the
same train and test splits were used throughout the single and
ensemble approaches along with DD and CI models to allow
for an easier comparison between the methods.
When using individual models, the CI approach tends to

exhibit a higher variability compared to DD. This can be seen
in the training RMSE values of the single CI models ranging
between 0.3 and 1.1, while DD model errors range between 0.3
and 0.7. While simple averaging only slightly improves the CI
model predictions, variance- and error-correlation-weighted
ensembles significantly improve accuracy and reduce varia-
bility, leading to errors that approach the intrinsic noise level.
This is possible because averaging weights can systematically
lower the contribution of “bad” solutions and enhance the

contribution of “good” solutions. While the error-correlation
method produces the lowest errors on average, the
(infrequent) presence of overfitting models can lead to large
weighted test RMSE values on specific test data set, as shown
in Figure 4b�1.5 for DD and 1.3 for CI, respectively. On the
other hand, the individual DD models provide more
homogeneous prediction accuracy, leading to only slight
improvements under ensemble averaging. This difference in
behavior under averaging practically eliminates the accuracy
advantage of DD models, providing CI prediction accuracies
that approach the noise level. It is important to emphasize that
averaging is beneficial even when a single train-test split is used
so that these gains can be actually achieved in practice.
Finally, we note that ensemble averaging also improves the

robustness of the CI models, even in the small data limit
regime. For example, as shown in Figure S5, the worst RMSE

Figure 4. Train and test RMSE values of the single and ensemble predictions for (a) data-driven and (b) chemistry-informed models trained with
51 data points. Box and whisker plots represent the predictions across the 10 separate train-test splits. Three ensemble averaging methods are
employed: simple average (Eavg), weighted variance (Evar.), and weighted error correlation (Eec).

Figure 5. Heatmap of the dissimilarity between ensembles of chemistry-informed (CI) and data-driven (DD) models trained to different data set
sizes. Dark green colors indicate pairs of models that exhibit similar chemistries, while white to brown colors indicate pairs of models that predict
very different reaction channels.
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error out of 10 different random set of only 17 data points
remains below 1.6 for all three averaging methods, which is
remarkably lower than the corresponding DD results (>2.3).
Nonetheless, it can be expected that robustness requires a
certain level of coverage of the relevant parameter space, as
models trained to small and highly concentrated data sets are
likely to generalize poorly to dramatically different conditions,
as is common with most data-driven methods.
Chemical Interpretability. A key advantage of using a

chemistry-motivated architecture instead of a conventional
black-box ML approach is the potential for chemical
interpretability. In the following, we assess whether the specific
chemistry predicted by the models can indeed be taken at face
value. In the absence of a complete ground truth of the
uranium extraction mechanism with DEHiBA, we elected to
use consistency as a surrogate measure of interpretability.
Here, consistency measures whether different models trained
on varying amounts of data and initialized with different
random parameters predict similar chemistry. To quantify the
interpretability, we compare net reaction fluxes�which are
defined as the difference in instantaneous fluxes between the
forward and backward directions of each reaction and diffusion
pathway integrated between 0 and 60 min, as predicted by
each model over 100 distinct experimental conditions. Net
reaction fluxes over the distinct experimental conditions were
stacked into a single vector Φi for each model, which was used
to calculate the pairwise cosine similarity between a pair of

models i and j, S i j( , )cos
i j

i j
= ·

. From there, a

dissimilarity metric was defined as a regularized inverse of
the pairwise cosine similarity, D S i j1/( ( , ) 10 )ij cos

3= + , i.e., a
pair of models will have a low dissimilarity if they predict
similar net reaction fluxes. This approach was chosen instead of
directly comparing the numerical values of the rate constants,

which is unlikely to be robust since changing the rate of fast
non-rate-limiting reactions from merely large to exceedingly
large could leave the overall chemical characteristics of the
model largely unchanged but result in a large apparent
difference between models. We also note that the rate
constants of forbidden reactions in the CI models are set to
zero for the purpose of comparisons with the DD models.
To visualize model consistency, a 120 × 120 matrix was

constructed based on Dij values calculated between the DD and
CI models regularized at λ = 10−3, 10−2 and 5 × 10−3, 10−2,
respectively, for each of the training set sizes (17, 51, 120).
Agglomerative clustering using a complete linkage criterion
was then employed to sort similar kinetic models into groups
for ease of visualization. The results are presented in Figure 5.
The results show that CI models are more consistent both
internally (between models trained to the same amount of
data) and externally (across different training set sizes) than
the DD models. The clustering analysis shows that 75% of the
CI models are capturing similar flux networks when the size of
the training set was 120 or 51, which decreased to 55% in the
low training data regime (17). The groups of common models
obtained at different training set sizes are more similar to each
other. CI models are hence expected to be interpretable, as a
high fraction of the models predict similar chemistry even
when trained independently on different subsets of the data. In
contrast, the DD models exhibit a greater diversity in their
reaction fluxes, leading to a large inconsistency between the
models. While DD models trained using 17 data points exhibit
some internal similarity, these models are not consistent with
other DD models trained to more data or with the CI models.
This shows that while DD models can produce accurate
predictions of the uranium distribution ratios�given a
sufficient amount of data, they often predict vastly different
underlying chemistries. It is interesting to note that in the large

Figure 6. Heatmap of fractional concentrations in the organic phase using variance averaging of (a) data-driven (DD) and (b) chemistry-informed
(CI) models trained with 51 data points. The relative concentrations (white to red colors) of U species in the organic phase (x axis) are reported
for each of 10 different train-test splits, which are ordered by increasing the test prediction accuracy (y axis). Vertical lines of uniform colors
therefore indicate a high consistency across the 10 different splits.
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training data regime (120), an increasing fraction of the DD
models are found to predict fluxes similar to the majority of CI
models (40% and 15% of the DD models for 120 and 51 data
points, respectively). This suggests that, as expected, the DD
and CI approaches eventually reach a consensus on the
underlying chemistry in the large data limit but that the CI
models are able to capture the right chemistry with a reduced
amount of data, which is critical in data-sparse scenarios such
as the one considered here.
This same general trend persists when considering

ensemble-averaged properties. To illustrate this point, the
final concentrations predicted pertaining to the experimental
conditions that produced the highest uranium distribution
ratio ([UO2](aq)2+ = 0.1 M, [DEHiBA](org) = 1.5 M, and
[HNO3](aq) = 6.0 M), were averaged using the prediction
variance scheme for both the DD and CI models trained with
51 data points. Figure 6a reports the fractional equilibrium
concentrations of the uranium complexes in the organic phase
relat ive to the init ia l uranium concentrat ion (
UO (NO ) (DEHiBA)

UO
x y

x
2 3 (org),eq

2

2 init
2

[ ]
[ ] + ). The y-axis in this heatmap corre-

sponds to each of the 10 different train-test splits ordered by
their increasing test prediction accuracy. Results show that the
final organic speciation varies considerably between the train-
test splits for the DD models, whereas the CI models produce
much more consistent predictions. For the DD models,
[UO2(NO3)2(DEHiBA)2] is predicted to be the dominant
complex in the organic phase for half of the splits; however, the
other half predicts [UO2(DEHiBA)]2+ as the dominant
species, which is chemically very unlikely due to its net
charge. Additionally, the total fraction of uranium complexes in
the organic phase and at the interface at equilibrium is
observed to vary widely from model to model.
I n c o n t r a s t , t h e C I m o d e l s p r e d i c t

[UO2(NO3)2(DEHiBA)2] as the dominant uranium complex
in the organic phase for 7 out of the 10 train-test splits, while
the total fraction of uranium species in the organic phase and
at the interface is more consistent between the models. Given
that extensive experimental studies using slope analysis,
thermodynamic modeling, EXAFS, and crystal structures
have suggested [UO2(NO3)2(DEHiBA)2] to be the predom-
inant extracted species,15,29,30,34,60−65 these results suggest that
the CI models, indeed, capture the chemistry of the system
better than the DD models; at least when only a limited
amount of experimental results are available. Additionally, DD-

51 reaction and diffusion fluxes become mostly uniform after
averaging; i.e., many distinct reaction channels contribute
roughly equally due to the similar prediction accuracies,
diminishing their interpretability. The complete net flux
networks of both DD and CI ensembles are presented in the
Supporting Information.
Lastly, we considered a hybrid approach in which both the

DD and CI regularization approaches were applied simulta-
neously. Although the joint space of regularization parameters
was not fully explored, results showed that while hybrid models
can exhibit lower prediction errors (Figure S9) compared with
the DD and CI models, this comes at the cost of a decrease in
model interpretability and consistency (Figure S10).
Minimal Reaction Networks. Minimal reaction networks

were finally derived from variance-averaged net fluxes of CI-51
models trained to 10 distinct train/test splits (Figure S7). This
was achieved using Dijkstra’s shortest-path algorithm,66 where
the effective edge length was defined as the logarithm of the
inverse of the averaged flux (i.e., the lower the flux, the more
distant two nodes are). This approach, previously employed to
identify kinetically favorable minimal reaction networks,67 was
used to trace the steps leading to the extraction of
[UO2(NO3)2(DEHiBA)2](org) from its aqueous source,
[UO2](aq)2+ . Figure 7 presents the key predicted pathways
from the 10 different splits. In the figure, the shade of black of
each arrow is proportional to the number of splits that
predicted the corresponding reaction step as part of the
minimal reaction network.
The minimal reaction network suggests one favored

extraction mechanism. The path begins with transport of
[UO2](aq)2+ to the interface, followed by coordination of a single
DEHiBA and nitrate ligand to [UO2](int)2+ , forming
[ U O 2 N O 3 ( D E H i B A ) ] ( i n t )

+ . F r o m t h e r e ,
[UO2(NO3)2(DEHiBA)2](int) is formed at the interface by
the sequential coordination of a second nitrate and DEHiBA
(or vice versa). Given the increased hydrophobicity,
[UO2(NO3)2(DEHiBA)2](int) is fully transferred into the
organic region. Previous studies that relied on DFT or
molecular dynamics calculations20,21 suggest two extraction
pathways that begin with uranium forming complexes
containing one or two nitrate ligands. As its hydrophilicity
decreases, the complex approaches the aqueous−organic
interface, thereby facilitating subsequent complexations with
the DEHiBA ligands. In particular, a mechanism proposed in
ref 20 suggests the formation of [UO2NO3(DEHiBA)]+, and

Figure 7. Minimal kinetic reaction networks for extracting [UO2(NO3)2(DEHiBA)2] from the organic phase. The black arrows represent the
ensemble-predicted pathways with varying shades that indicate the number of splits that predicted the corresponding steps. The nodes of the graph
represent U complexes in the aqueous (blue), interface (green), and organic (yellow) phase.
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[UO2NO3(DEHiBA)2]+ intermediates from an initial
[UO2(NO3)]+ complex, whereas a second route proceeds
through the formation of neutral intermediate species,
[UO2(NO3)2] and [UO2(NO3)2(DEHiBA)]. Although our
CI models only occasionally predicted either [UO2(NO3)]+ or
[UO2(NO3)2] to be an intermediate, the subsequent steps
following the formation of the [UO2NO3(DEHiBA)]+
complex correspond to the first proposed mechanism in ref 20.

■ CONCLUSIONS
The power of large, domain-agnostic, black-box ML models is
increasingly evident when extensive training data sets are
available. However, in many application areas, the volume of
accessible data is limited by prohibitive time and cost. This
creates a strong incentive to develop ML techniques that
incorporate fundamental physics and chemistry into their
architecture or training process. In this paper, we present such
an approach to predict the distribution ratios of uranium in a
liquid−liquid extraction process using N,N-di-2-ethylhexyl-
isobutyramide (DEHiBA). The extraction process is modeled
as a chemical reaction network governed by mass action
kinetics, describing the temporal evolution of the concen-
trations of various elementary species. These models are
trained by using backpropagation through the ODE solvers in
order to reproduce experimentally measured distribution
ratios. Specifically, two regularization techniques were
evaluated: (1) a data-driven chemistry-agnostic L1 regulariza-
tion approach and (2) a chemistry-informed approach
incorporating results from DFT calculations.
It was observed that when optimally regularized, data-driven

models exhibit low errors that approach the uncertainty of
experimental measurements when trained on as little as 51 data
points while relying on only 20% of the possible reactions. This
demonstrates that the chemically sound structure of the
reaction network coupled with regularization enables robust
learning from very limited data, automatically removing
reactions that are deemed unnecessary. However, ensembles
of models in this class were observed to be chemically
inconsistent with one another and with known chemistry,
making them inadequate to shed light on the underlying
dominant reaction mechanisms unless a large amount of data is
available. This inconsistent representation of the chemistry
follows from the aggregate nature of the experimental
measurements, which only measure the variations in total
metal concentration in the bulk but not the concentration of
each species, which proves insufficient to unambiguously
constrain the models when limited data is available.
On the other hand, chemistry-informed models demonstrate

good prediction accuracy, albeit slightly lower than comparable
data-driven models, apparently due to their rougher loss
landscape which makes training more difficult. This deficiency
can be addressed using ensemble averaging methods,
producing prediction errors that approach the intrinsic
uncertainty of the training measurements when only a few
tens of data points are available. Additionally, a consensual
description of the underlying chemistry is also achieved with
these models, which was found to be consistent with
experimental observations. This consistency enhances con-
fidence in the interpretation of the chemical reaction networks,
effectively producing a robust description of the chemistry
despite the initial complexity of the model space, especially
when coupled with the extraction of minimal reaction
networks. The most favorable extraction mechanism of

UO2(NO3)2(DEHiBA)2 suggested by the models is broadly
consistent with mechanisms suggested by previous studies.
Given their accuracy, robustness, and interpretability trade-

offs, purely data-driven models appear more suited to
situations where accurate predictions are desired but
interpretability is not required. When a few tens of experiments
are available, these models prove to be very accurate and
unaffected by subjective biases beyond the enumeration of
possible unit reactions, which makes them easier to apply to
different systems (e.g., different ligands). On the other hand,
chemistry-informed models can provide robust chemically
interpretable reaction networks even when limited data is
available. The indicative correlation between predictions and
chemical consistency of these models enhances reliable model
selection based on performance, reducing the need for deeper
investigations. Kinetics derived from chemistry-informed
models could help explore the experimental space more
efficiently and provide deeper insights into the extraction
process at the molecular level. It is noted, however, that
carrying out the required DFT calculations represents a
significant effort, although this task can now be efficiently
automated.39,68

While networks are relatively well constrained by chemical
regularization, uncertainties still remain given the incomplete
coverage of the quantum calculations (i.e., the absence of
interfacial thermodynamic information) and the lack of
experimental information on the concentrations in the
interface and organic phase in most experiments. Complex-
resolved information including identity and/or concentration
of individual complexes in different phases would constrain the
models even more efficiently and would therefore be extremely
beneficial. Finally, the strongly nonuniform distribution of
contact times (especially the relative lack of short-time data)
mostly informs the thermodynamic/steady-state predictions of
the model, in contrast to the transient period. Studies with a
more complete uniform sampling of the contact time
distribution would therefore be extremely valuable both to
train and validate these types of kinetic models.
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