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Within the harmonic approximation to transition state theory, the rate of escape from a reactant is
calculated from local information at saddle points on the boundary of the state. The dimer minimum-
mode following method can be used to find such saddle points. But as we show, dimer searches that
are initiated from a reactant state of interest can converge to saddles that are not on the boundary of
the reactant state. These disconnected saddles are not directly useful for calculating the escape rate.
Additionally, the ratio of disconnected saddles can be large, especially when the dimer searches are
initiated far from the reactant minimum. The reason that the method finds disconnected saddles is
a result of the fact that the dimer method tracks local ridges, defined as the set of points where the
force is perpendicular to the negative curvature mode, and not the true ridge, defined as the boundary
of the set of points which minimize to the reactant. The local ridges tend to deviate from the true
ridge away from saddle points. Furthermore, the local ridge can be discontinuous and have holes
which allow the dimer to cross the true ridge and escape the initial state. To solve this problem, we
employ an alternative definition of a local ridge based upon the minimum directional curvature of the
isopotential hyperplane, κ , which provides additional local information to tune the dimer dynamics.
We find that hyperplanes of κ = 0 pass through all saddle points but rarely intersect with the true
ridge elsewhere. By restraining the dimer within the κ < 0 region, the probability of converging
to disconnected saddles is significantly reduced and the efficiency of finding connected saddles is
increased. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4898664]

I. INTRODUCTION

The determination of saddle points is routinely used to
find reaction mechanisms and calculate reaction rates in solid
state systems and surface chemistry. The underlying approx-
imation is that the bottleneck region of a reaction is local-
ized to a transition state (TS) region in the neighborhood of a
first-order saddle point on the potential energy surface. A har-
monic expansion of the potential around the saddle point and
reactant minimum can be used to quantify the reaction rate
within the harmonic approximation to transition state theory
(HTST).1, 2

In the context of exploring rare-event dynamics, quantifi-
cation of the low-energy saddle points that lead from a reac-
tant state gives the escape rate and branching ratio to possi-
ble product states. With this information, the adaptive kinetic
Monte Carlo algorithm can be used to model the state-to-state
dynamics over long time scales.3, 4 Here, the definition of a
state is the set of points which minimize to a single mini-
mum, as followed by a steepest descent trajectory. In other
words, the minimum geometry is the inherent structure of the
state.5

The focus of this paper is to improve the computational
methods designed to determine saddle points that connect,
in the sense of a steepest descent path, to a specified initial
state.

a)Author to whom correspondence should be addressed. Electronic mail:
henkelman@utexas.edu

II. DIMER METHOD

The dimer method6 is one such minimum-mode follow-
ing algorithm (see also Refs. 7 and 8) designed to find saddle
points on a potential energy surface. In terms of a dynamical
system, this is to find first-order saddle points of the gradient
flow,

ẋ = −∇V (x), (1)

where x ∈ Rn is the position, V (x) is the potential, and
−∇V (x) is the force. In the region of the potential with
at least one negative curvature mode, which is the focus of
this paper, the dimer method employs a modified dynamical
system,

ẋ = F⊥ − F ∥,

F ∥ = −τ̂ᵀ∇V (x)τ̂ , (2)

F⊥ = −∇V (x) − F ∥,

where τ̂ is the unit eigenvector of the Hessian matrix H(V )
associated with the smallest eigenvalue.6 τ̂ is also called the
min-mode direction, since it is aligned along the minimum
mode of the Hessian. The name of the dimer method comes
from the way τ̂ is calculated. Two nearby images (a dimer
of configurations) are rotated to find the lowest mode. This
finite-difference approximation avoids explicit construction
and diagonalization of the Hessian matrix. The center of the
dimer x follows Eq. (2) to climb up the min-mode direction
and descend in all perpendicular directions. If the min-mode
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direction is unstable (the associated eigenvalue is negative)
under Eq. (1), then Eq. (2) stabilizes it. At a first-order saddle
there is only one unstable direction, which is the min-mode
direction τ̂ , so that Eq. (2) converges. All other types of criti-
cal points of Eq. (1) are unstable under Eq. (2).

A. Dimer escape from a local minimum

In the context of calculating the HTST rate from an initial
state, the objective is to find low energy saddle points on the
boundary of the state. Equation (2) guarantees dimer conver-
gence to a first-order saddle, but it does not guarantee that the
saddle is connected to the initial state, even if the dimer search
is started well-inside in the initial state basin. Disconnected
saddles are not directly useful for calculating the escape rate
and are thus considered failures of the method when it is used
to calculate an HTST escape rate.

To understand the nature of the disconnected-saddle
problem, we need to define two types of ridges: the true ridge
and the local ridge as seen by the dimer method. The true
ridge is the boundary of a state, or alternatively the separatrix
in the dynamical system of Eq. (1). If the dimer method did
not cross the true ridge, it could not find disconnected sad-
dles. The dimer evolution, however, is guided by local ridges,
defined by the set of points with F∥ = 0 and at least one nega-
tive eigenvalue of H. Since the F∥ direction (along τ̂ ) is stable
under Eq. (2), the dimer is unable to cross a local ridge. The
heart of the disconnected-saddle problem is that while the lo-
cal ridge follows the true ridge in the harmonic region of a
saddle point, the two tend to diverge away from the saddle
point. Even more problematic is that the local ridge is not
nessecarily a closed surface; holes in the local ridge allow the
dimer to escape from the initial state. Basins of attraction as-
sociated with disconnected saddles can penetrate the initial
state through these holes and attract the dimer across the true
ridge.

The two-dimensional potential shown in Fig. 1 is used to
illustrate the disconnected-saddle problem. The analytic form
of the potential is defined in Ref. 6, modified so that the cen-
tral Gaussian hill is turned into a basin by changing the sign
of its amplitude, A1. The contours of the potential are shown
as black lines. There are four minima (M1-4) and four sad-
dles (S1-4). The dark shaded regions around the minima have
no negative curvature mode; in these regions Eq. (2) is not
applied; instead, the dimer is moved directly up the lowest
curvature mode to rapidly escape the convex region. The col-
ors indicate the dot product between the min-mode τ̂ and the
force −∇V (x) directions.

Outside the dark shaded regions of the minima, the deep
blue paths are the local ridges where the force and min-mode
directions are perpendicular. The local ridges pass through
each saddle point. It is also clear, however, that they are sepa-
rated into segments and do not enclose the minima. Points at
which the local ridges terminate are contained within the ma-
genta contours, defined as regions where the two eigenvalues
of the Hessian are both negative. At the termination points, the
min-mode direction τ̂ abruptly switches from one eigenvector
to the other.
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FIG. 1. A two dimensional potential shown in the black contour lines has
four minima M1-4 and four saddle points S1-4. The colors indicate the dot
product between the minimum mode and force directions, |τ̂ᵀ ˆ∇V |. In the
shadowed areas, the lowest eigenvalue of the Hessian matrix is positive, and
in the magenta circles, both eigenvalues of the Hessian are negative.

The basins of attraction of the dimer, along with the local
and true ridges, are plotted in Fig. 2(a). A first order quickmin
(QM) optimizer,9, 10 with a small time step of 1 fs (assum-
ing a mass of 1 amu and potential units of eV and Å), and a
maximum step size of 0.05 Å is used for the numerical imple-
mentation of Eq. (2), which gives similar basins of attraction
as a steepest descent algorithm but converges more rapidly.
Saddles S1, S3, and S4 line on the boundary of M1 (white
lines) while S2 is disconnected. The basin of attraction of S2,
however (light blue region), penetrates through the boundary
of M1 and even lies close to the minimum. A similar problem
exists for state M2. M2 has only one connected saddle, S2, but
inside the boundary of M2 there are attractors to S4 (yellow)
and S1 (green) and the area of these disconnected attractors
is comparable to that of the connected saddle S2 (light blue).
The boundaries between these basins of attraction intersect
the termination of the local ridges (red lines), demonstrating
that the penetration of attractors to disconnected saddles occur
at breaks in the local ridge.

B. Scaling the parallel and perpendicular forces

Since breaks in the local ridge allow the dimer to cross
the true ridge, one strategy to prevent the dimer from find-
ing disconnected saddle is to keep it away from the local
ridge. This can be done by modifying the dimer evolution of
Eq. (2) so that the dimer climbs up the potential along the min-
mode direction more slowly than it descends the potential in
perpendicular directions. Then, the dimer will be more likely
to approach the saddle along the min-mode direction, where
the true and local ridges are coincident, and less likely to find
holes in the local ridge away from the connected saddles. This
can be implemented with a scaling parameter γ between the
perpendicular and parallel forces,

ẋ = F⊥ − γF ∥; (0 < γ ≤ 1). (3)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
24.155.242.172 On: Tue, 28 Oct 2014 03:25:55



164111-3 Xiao, Wu, and Henkelman J. Chem. Phys. 141, 164111 (2014)

S4

M1

M2

0.5 1.0 1.5 2.0 2.5 3.0

2

1

0

-1

-2

-3

S3

S1 S2

0.5 1.0 1.5 2.0 2.5 3.0

2

1

0

-1

-2

-3

M1

M2

S3

S1 S2

S4

(a)

(b)

FIG. 2. The attraction regions of the dimer method using (a) Eq. (2) and (b)
Eq. (3) with γ = 0.2. The colored regions indicate the following: deep blue:
both eigenvalues of the Hessian are positive; green: the attraction region of
S1; light blue: S2; orange: S3; yellow: S4. The red lines are the local ridges
and the white lines are the true ridges.

We note that the activation-relaxation technique (ART-
neuveau)8 and hybrid eigenvector following7 methods make
use of this idea by separating variables and relaxing in the
perpendicular direction before moving up the potential along
the parallel direction. Figure 2(b) shows the basins of attrac-
tion setting γ = 0.2 in Eq. (3) so that perpendicular relaxation
is five times faster than activation parallel to the min-mode
direction. Clearly the penetration of disconnected attractors
decreases, but the problem is not solved because the holes in
the local ridge remain, as well as clear channels of escape.
Reducing γ below 0.2 was not found to improve the basins
of attraction; it was also found to significantly increase the
number of iterations required for the method to converge to a
saddle.

III. κ-DIMER METHOD

Constraining a dimer search to the basin of the reactant
state is equivalent to keeping it away from the true ridge, ex-
cept in the neighborhood of a saddle points. The true ridge
is a nonlocal quantity and cannot be determined solely upon
local information of the potential energy surface. It is possi-
ble, however, to define a region that contains the true ridge,
with only local information. If we can define such a ridge-
neighborhood, we can keep the dimer search from entering it
and also prevent it from crossing the true ridge. Additionally,
we will show that keeping the dimer search away from the true
ridge can reduce the search space and increase the efficiency
of finding saddle points. This will only work, however, if the
boundary of the ridge region also intersects the true ridge at all
first-order saddle points so that it does not prevent the dimer
method from finding them. In the following, we present our
choice of repulsive region based upon the local minimum di-
rectional curvature of the isopotential hyperplane κ , and show
how to modify the dimer equations of motion to avoid this re-
gion and increase the efficiency of finding connected saddles.

A. Isopotential curvature κ

The idea behind using the isopotential curvature is that
regions around minima can be identified by contour lines
curving around the minimum, whereas at ridges, the contours
curve away. A similar concept to the isopotential curvature
is widely used in image processing, where it is called the
isophote curvature.11–13 For images, the quantity of interest
is the luminance on a two-dimensional surface, while ours is
the potential energy in a high dimensional space. The two-
dimensional case will be discussed first so that results from
image processing can be borrowed directly.

The black lines in Fig. 2 are the contours of the potential
energy V (x1, x2). At any point, there is a tangent direction
of the contour, ĉ, which can be used to define an angle, θ ,
between the contour and a fixed reference. ĉ is a unit vector
perpendicular to ∇V . The distance along the contour is de-
noted as s. The isopotential curvature κ is a description of how
fast the contour tangent direction changes as moving along
the isopotential contour. κ can be calculated from the Hessian
matrix and the force,

κ = dθ

ds
= −∇ĉ(∇ĉV )

∥∇V ∥
= − ĉᵀHĉ

∥∇V ∥
. (4)

For the two-dimensional potential discussed previously,
regions indicating the sign of κ are plotted in Fig. 3. We find
that the κ < 0 region (deep blue) never touches the true ridges
(white lines) except at the saddle points. If κ > 0 is set as the
repulsive region for dimer searches in this example, the two
requirements for a good restraint are satisfied: (i) the κ < 0
region avoids the true ridge; (ii) the boundary κ = 0 intersects
the true ridge at all saddle points. The second requirement can
be proven in general. Near a saddle the potential energy can
be approximated by a harmonic function and κ can be found
explicitly. Taking V (x1, x2) = ax2

1 − bx2
2 with a > 0 and
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FIG. 3. Regions of positive (light blue) and negative (dark blue) isopotential
curvature κ are separated by the κ = 0 restraining boundary for the κ-dimer
method. The evolutions of the dimer (orange) and κ-dimer (yellow) methods
are compared from the same initial position, x0.

b > 0 near the saddle point (0, 0), then

κ = bx2
2 − ax2

1√
(x1/a)2 + (x2/b)2

⇒ lim
(x1,x2)→(0,0)

κ = 0. (5)

Requirement (i), however, is not always satisfied. On
the true ridge S, the force is parallel to the tangent of S,
by definition, and thus is zero along the normal direction n̂:
∇n̂V (x1, x2)|(x1,x2)∈S = 0. The normal n̂ is also parallel to the
contour because the contour is perpendicular to the force. The
sign of κ is then determined by the sign of n̂ᵀHn̂ ≡ ν. When ν

> 0, κ < 0 at the true ridge, and constraining the dimer in the
κ < 0 region does not necessarily avoid the true ridge. Since ν

is the second derivative along the normal direction of the true
ridge, having both ν > 0 and a normal gradient of zero means
V (x1, x2) reaches the minimum in the normal direction on the
true ridge. Thus the true ridge must be of valley shape. This
is a rare situation on typical potential energy surfaces, but it
can exist in model potentials and may cause problems in some
systems. An example of this scenario will be given below.

Although the κ < 0 constraint does not always satisfy
requirement (i), it does strictly exclude regions with more than
one negative eigenvalues of H, which reduces the possibility
of leaving the initial basin and finding a disconnected saddle.
This can be shown by taking the two eigenvalues of H as λ1
and λ2 where λ1 ≤ λ2. Then λ1 ≤ ν ≤ λ2 and in the permitted
regions where κ < 0, we have λ2 ≥ ν > 0.

In the extension of the isopotential curvature to an n-
dimensional space Rn, the isopotential contours form an (n
− 1)-dimensional hyperplane. The direction perpendicular to
the force is therefore not unique, and our choice of κ is the

minimum directional curvature,

κ = − min
ĉ⊥∇V

ĉᵀHĉ

∥∇V ∥
, (6)

where ĉ is a unit vector and ĉ ⊥ ∇V constrains ĉ on the tan-
gent plane of the isopotential hyperplane. Denoting λ1 ≤ λ2
≤ ··· as the eigenvalues of H and ν1 as minĉ⊥∇V (ĉᵀHĉ), we
still have λ1 ≤ ν1 ≤ λ2. On the isopotential hyperplane, there
is always a vector ĉx on the plane spanned by the eigenvectors
associated with λ1 and λ2. Thus, ĉᵀ

x Hĉx ≤ λ2. Combined with
ν1 ≤ ĉ

ᵀ
x Hĉx , we can prove that λ1 ≤ ν1 ≤ λ2. In high dimen-

sion, therefore, restraining the dimer to κ < 0 (ν1 > 0) avoids
regions where H has more than one negative eigenvalue, as in
the two-dimensional case.

Calculation of ν1 and κ can be done with the same dimer
rotation algorithm used to find the minimum-mode direc-
tion τ , with one modification. The dimer is constrained to
the isopotential hyperplane by projecting out the components
along the force direction. The extra work to calculate κ ap-
proximately doubles the amount of computational work of the
κ-dimer method as compared the regular dimer. Thus, the κ-
dimer method must be twice as efficient at finding connected
saddles, or reduce the number of iterations to find a saddle
as a result of the κ restraint, to outperform the regular dimer
method.

B. Equation of motion of the κ-dimer method

To apply a restraint based on the sign of κ , two coeffi-
cients are added to scale the perpendicular and parallel forces
of the dimer method,

ẋ = γ2F
⊥ − γ1F

∥,

γ2 = 1 − 1
1 + eβκ

, (7)

γ1 = 2
1 + eβκ

− 1,

where β is a constant determining how quickly the coeffi-
cients switch values around κ = 0. Figure 4 illustrates how
the values of γ 1 and γ 2 change as a function κ from which
three regions can be identified.

1. When κ is sufficiently negative, ẋ = −F ∥ and the dimer
moves up potential along the lowest curvature mode.
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FIG. 4. Values of γ 1 and γ 2 as a function of κ , with β = 5.
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This is equivalent to the evolution of the regular dimer
method in convex regions of the potential.

2. Near κ = 0 where γ 1 = γ 2 > 0 we recover the regular
dimer method of Eq. (2).

3. When κ is sufficiently positive, ẋ = F⊥ + F ∥ = −∇V

and the dimer moves down the potential away from the
region containing the true ridge.

The logic behind these choices is as follows. For
κ < 0 it is unlikely to find or cross the true ridge and we
allow the dimer to aggressively climb up the potential. This
is equivalent to rapidly escaping convex regions of the poten-
tial around minima to find a region with at least one negative
curvature mode where saddles are present. For κ = 0 the reg-
ular dimer method is employed, but for κ > 0 there is a risk
of crossing the true ridge and the κ-dimer is relaxed back to-
wards κ = 0. In summary, the aim of the κ-dimer method is
to restrain the dimer to the κ = 0 surface as it approaches a
saddle. This improves upon the original dimer method which
follows local ridges, and can escape to disconnected saddles.
Our choices of setting β = 5 and flipping the sign of the par-
allel force at κ = 0 are arbitrary, yet sensible choices. Future
calculations will demonstrate how universal these choices are
or if system dependent tuning is required.

In Fig. 3, a trajectory of the κ-dimer is compared to that
of the regular dimer initiated from the same configuration
point. The κ-dimer converges to the connected saddle S1 fol-
lowing the κ = 0 surface, whereas the regular dimer escapes
to the disconnected saddle S2.

C. Two dimensional examples

First, we revisit the two-dimensional potential of Fig. 2.
The new basins of attraction, following the κ-dimer motion
of Eq. (7), are shown in Fig. 5. The disconnected problem
is solved in this case; at the lower and upper center of the
map, the boundaries of the green and light blue regions align
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FIG. 5. Basins of attraction of the κ-dimer method, as described by Eq. (7).

with the true ridge. The yellow basin also increases in volume
due to fact that the κ-dimer more rapidly climbs out of the
minimum towards the κ = 0 surface.

Unfortunately, there are cases in which the κ = 0 sur-
face intersects the true ridge and the κ-dimer is able to find
disconnected saddles. Such a counter example is shown in
Fig. 6. The potential, which is modified from Ref. 14, has four
identical Gaussian basins in each quadrant and two Gaussian
hills in the middle aligned along the y-axis. The lower hill is
slightly larger than the upper one to break the mirror symme-
try along the x-axis. Considering the initial state containing
minimum M1, there are two saddles (S2 and S3) that lie on its
boundary. The two hills make the horizontal true ridge points

M1

S5

(a)

(b)

S2

κ > 0

κ < 0
M1

S5 S2S1

S4

S2

S4

S1

S3

FIG. 6. A counter example, where the disconnected problem still exists with
the κ = 0 restraint applied. (a) Regions divided by the κ = 0 surface; the
white lines are true ridges and the white points are saddles. (b) The basins of
attraction for the κ-dimer method. The deep blue regions have two positive
Hessian eigenvalues and the other colors are the basins of attraction of the
contained saddle. The red circle is the boundary of the attractor to S1 of the
regular dimer method.
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between them become minima along the normal directions of
the ridges (valley shape), and thus the κ < 0 regions overlap
the true ridges as the red arrows indicate in Fig. 6(a). As a
result, Eq. (7) does not prevent S1 attracting some followers
crossing the white lines from state M1. But compared with
the red circle which is the attraction region of S1 from the
regular dimer method, the constraint still shrinks the area of
S1 within the boundary of state M1.

D. Pt heptamer island

Next, we consider the performance of the κ-dimer
method in a higher dimensional system, containing an island
of seven adsorbed Pt atoms on a Pt(111) surface, as shown
in the inset of Fig. 7. The interatomic interactions are de-
scribed by a Morse potential, with parameters as described in
Ref. 15. The heptamer island, as well as three substrate lay-
ers, are free to move, giving a total of 525 degrees of freedom.
Three additional layers of substrate are frozen at the bottom
of the slab to represent the bulk. Dimer searches are started
from two sets of initial conditions. In both cases, 1000 initial
configurations are generated by displacing one of the least-
coordinated atoms on the corner of the island and any neigh-
bors within 3.3 Å (nearest neighbors) of it. In the first set,
relatively small Gaussian displacements with a standard de-
viation of 0.3 Å moved these atoms modestly away from the
minimum; in the second set, displacements of 0.5 Å moved
the atoms closer to the true ridge, but still within the reac-
tant state.16, 17 All saddle searches used the conservative QM
optimizer with a time step of 1 fs and a maximum step size
of 0.1 Å to avoid any discontinuities in the path which can
be caused by more aggressive optimizers.10 Convergence was
claimed when the magnitude of the total force dropped below
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FIG. 7. Comparison of the dimer and κ-dimer methods in terms of the distri-
bution of barriers found and number of force calls required to find them. The
inset figure in (b) shows the geometry of the reactant minimum containing a
Pt7 island on Pt(111). The magnitude of the initial Gaussian displacements
used to initiate the searches is (a) relatively conservative, 0.3 Å; (b) relatively
aggressive, 0.5 Å.

TABLE I. Success ratio for finding connected saddles for the dimer and κ-
dimer methods for two displacement amplitudes σ . The average number of
force calls are measured in terms of all the successful searches ⟨FC⟩1 and
successful searches that found saddles below 1.4 eV ⟨FC⟩2.

Method σ (Å) Success ⟨FC⟩1 ⟨FC⟩2

Dimer 0.3 88.1% 2462 4985
κ-dimer 0.3 99.5% 3658 5449
Dimer 0.5 65.5% 4030 23 452
κ-dimer 0.5 99.8% 3508 6425

0.001 eV/Å. Both dimer methods were started from the same
initial points to reduce statistical errors in the comparison.

The success ratio for finding connected saddles and the
average number of force calls for the dimer and κ-dimer meth-
ods are listed in Table I. For both choices of initial displace-
ments σ , the κ-dimer significantly increases the success ratio.
The fact that the success ratio is close to unity indicates that
the scenario in which the κ = 0 surface crosses the true ridge,
as presented in the previous counter-example, appears to be
unlikely in this high dimensional system.

For the conservative initial points (σ = 0.3 Å) the discon-
nected problem accounts for only 12% of the regular dimer
searches and the additional cost of the κ-dimer method does
not outweigh the fact that the κ-dimer has only 0.5% discon-
nected saddles. For larger displacements (σ = 0.5 Å), the dis-
connected saddle rate drops from 34.5% in the regular dimer
method to 0.2% with the κ-dimer method, so that the later
becomes more efficient in terms of the average cost to find a
connected saddle ⟨FC⟩1. In terms of the cost to find a saddle
below 1.4 eV ⟨FC⟩2, the improvement is even more dramatic.
These large-displacement results are particularly important
because they systematically increase the probability of finding
relative higher-energy saddles, as shown in Fig. 7. Two addi-
tional aspects of the κ-dimer method can be seen from this
figure. First, there is a better chance of finding all saddles in
the energy window of interest, such as the saddles around 1.2
eV. Second, while the κ-dimer costs twice as many force calls
per rotation, the cost per saddle search is typically very sim-
ilar to the regular dimer, indicating that the κ-dimer is taking
a more direct path to the saddles as a result of the κ restraint.

E. Au55 cuboctahedral cluster

Our final example examines the deformation mechanisms
of a 55-atom Au cluster, initially in a metastable cuboctahe-
dral shape. Au nanoparticles have attracted interest for their
catalytic activity in various chemical reactions.18, 19 The deter-
mination of the morphology of small nanoparticles is tremen-
dously challenging, experimentally. For a theoretical under-
standing of catalytic activity, however, it is crucial to know
the structure and the corresponding stability of model parti-
cles. Here we show that a gas-phase Au55 cuboctahedral clus-
ter easily deforms to other structures by overcoming small
barriers. In this example, the κ-dimer again improves the suc-
cess ratio of saddle searches. We also show a remarkable case
where four low-energy saddle points connect the same reac-
tant and product states via different reaction pathways.
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TABLE II. Success ratio for finding connected saddles for the dimer and κ-
dimer methods. The average number of force calls are measured in terms of
all the successful searches ⟨FC⟩1 and successful searches that found saddles
below 0.5 eV ⟨FC⟩2.

Method σ (Å) Success ⟨FC⟩1 ⟨FC⟩2

dimer 0.3 71.6% 5085 20 115
κ-dimer 0.3 97.6% 4965 7276

The interatomic interaction between Au atoms is de-
scribed by the quantum Sutton-Chen potential with a cutoff
radius of 15 A to include all the atoms in the cluster.20 For the
κ-dimer calculations, the forms of γ 1 and γ 2 are taken as in
Fig. 4. To accelerate convergence near saddle points, when
)V is less than 0.1 eV/Å, γ 1 and γ 2 are set to unity to recover
the convergence properties of the regular dimer method. The
six translational and rotational modes are projected out for
both the dimer and κ-dimer calculations. 1000 searches are
conducted from initial configurations generated by displacing
all 55 atoms by a Gaussian distribution with a standard devi-
ation of 0.3 Å.

The relative performance of the two methods is shown in
Table II, with barrier distributions in Fig. 8. The results are
similar to the Pt heptamer example: the κ-dimer decreases the
ratio of disconnected saddles to near-zero and increases the
probability of finding low energy saddles. Different from the
Pt heptamer, the Au55 cluster is more complicated in terms
of the number of escape pathways from the reactant, due to
its high ratio of under coordinated surface atoms. The low-
est barrier process, which involves all 55 atoms (162 de-
grees of freedom), is the Mackay cuboctahedron to icosahe-
dron transformation.21 This concerted mechanism, shown in
Fig. 9(a), has a remarkably low barrier in Au (ca. 0.3 eV).
The second lowest barrier, shown in the first row of Fig. 9(b),
involves more than eight atoms. Interestingly, there exist an-
other three reaction pathways connecting the same reactant
and product state, with slightly higher barriers, as shown in
the following three rows of Fig. 9(b). This high dimensional
system with complicated reaction mechanisms demonstrates
the robustness of the κ-dimer method for finding connected
saddles.
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FIG. 8. Comparison of the dimer and κ-dimer methods for a Au 55 atom
cuboctahedral cluster. The magnitude of the initial Gaussian displacements
used to initiate the searches is 0.3 Å.
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FIG. 9. Deformation pathways of the Au55 cuboctahedron. (a) Mackay trans-
formation to the icosahedron. The red lines indicate the front edges. (b) Four
possible pathways to deform the triangle connected by red lines to the same
product structure. The black arrows indicate the movement of atoms from
the reactant to the saddle structure. The red dots emphasize the differences
between the saddle points in the four mechanisms.

IV. CONCLUSION

The original dimer method is demonstrated to converge
to saddles that are disconnected from the initial state where
the search is initiated. This problem is shown to be intrinsic to
the method and related to how the dimer method follows local
ridges across the true ridge bordering the initial state and into
adjacent states. The concept of the isopotential curvature κ is
introduced into the method because the κ = 0 surface tends
to cross the true ridge only at saddle points. Restraining the
dimer method to the κ = 0 surface is the basis of the κ-dimer
method, which is shown to nearly eliminate the disconnected-
saddle problem, and in cases where saddle searches are started
away from the local minimum, significantly increases the ef-
ficiency of finding connected saddles.
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